挖掘Twitter的细粒度政治观点极性分类、意识形态检测和讽刺检测

Sandeepa Kannangara
{"title":"挖掘Twitter的细粒度政治观点极性分类、意识形态检测和讽刺检测","authors":"Sandeepa Kannangara","doi":"10.1145/3159652.3170461","DOIUrl":null,"url":null,"abstract":"In this paper, we propose three models for socio-political opinion polarity classification of microblog posts. Firstly, a novel probabilistic model, Joint-Entity-Sentiment-Topic (JEST) model, which captures opinions as a combination of the target entity, sentiment and topic, will be proposed. Secondly, a model for ideology detection called JEST-Ideology will be proposed to identify an individual»s orientation towards topics/issues and target entities by extending the proposed opinion polarity classification framework. Finally, we propose a novel method to accurately detect sarcastic opinions by utilizing detected fine-grained opinion and ideology.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Mining Twitter for Fine-Grained Political Opinion Polarity Classification, Ideology Detection and Sarcasm Detection\",\"authors\":\"Sandeepa Kannangara\",\"doi\":\"10.1145/3159652.3170461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose three models for socio-political opinion polarity classification of microblog posts. Firstly, a novel probabilistic model, Joint-Entity-Sentiment-Topic (JEST) model, which captures opinions as a combination of the target entity, sentiment and topic, will be proposed. Secondly, a model for ideology detection called JEST-Ideology will be proposed to identify an individual»s orientation towards topics/issues and target entities by extending the proposed opinion polarity classification framework. Finally, we propose a novel method to accurately detect sarcastic opinions by utilizing detected fine-grained opinion and ideology.\",\"PeriodicalId\":401247,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3159652.3170461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3170461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文提出了三种微博社会政治观点极性分类模型。首先,提出了一种新的概率模型JEST (Joint-Entity-Sentiment-Topic),该模型将观点作为目标实体、情感和主题的组合来捕获。其次,提出一种名为“笑话意识形态”的意识形态检测模型,通过扩展所提出的意见极性分类框架来识别个人对主题/问题和目标实体的倾向。最后,我们提出了一种利用检测到的细粒度意见和意识形态来准确检测讽刺意见的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Twitter for Fine-Grained Political Opinion Polarity Classification, Ideology Detection and Sarcasm Detection
In this paper, we propose three models for socio-political opinion polarity classification of microblog posts. Firstly, a novel probabilistic model, Joint-Entity-Sentiment-Topic (JEST) model, which captures opinions as a combination of the target entity, sentiment and topic, will be proposed. Secondly, a model for ideology detection called JEST-Ideology will be proposed to identify an individual»s orientation towards topics/issues and target entities by extending the proposed opinion polarity classification framework. Finally, we propose a novel method to accurately detect sarcastic opinions by utilizing detected fine-grained opinion and ideology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信