基于机器学习技术的蛋白质模型评估

Anjum Reyaz-Ahmed, R. Harrison, Yanqing Zhang
{"title":"基于机器学习技术的蛋白质模型评估","authors":"Anjum Reyaz-Ahmed, R. Harrison, Yanqing Zhang","doi":"10.1504/IJFIPM.2010.039121","DOIUrl":null,"url":null,"abstract":"We attempt to solve the problem of protein model assessment using machine learning techniques and information from sequence and structure of the protein. The goal is to generate a machine that understands structures from PDB and given a new model, predicts whether or not it belongs to the class of PDB structures. We show two such machines (SVM and FDT); results appear promising for further analysis. To reduce computational overhead, multiprocessor environment and basic feature selection method is used. The prediction accuracy using improved FDT is above 80% and results are better when compared with other machine learning techniques.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein model assessment via machine learning techniques\",\"authors\":\"Anjum Reyaz-Ahmed, R. Harrison, Yanqing Zhang\",\"doi\":\"10.1504/IJFIPM.2010.039121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We attempt to solve the problem of protein model assessment using machine learning techniques and information from sequence and structure of the protein. The goal is to generate a machine that understands structures from PDB and given a new model, predicts whether or not it belongs to the class of PDB structures. We show two such machines (SVM and FDT); results appear promising for further analysis. To reduce computational overhead, multiprocessor environment and basic feature selection method is used. The prediction accuracy using improved FDT is above 80% and results are better when compared with other machine learning techniques.\",\"PeriodicalId\":216126,\"journal\":{\"name\":\"Int. J. Funct. Informatics Pers. Medicine\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Funct. Informatics Pers. Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJFIPM.2010.039121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2010.039121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们试图利用机器学习技术和蛋白质的序列和结构信息来解决蛋白质模型评估的问题。目标是生成一台能够理解PDB结构的机器,并给出一个新模型,预测它是否属于PDB结构类。我们展示了两个这样的机器(SVM和FDT);研究结果似乎有希望进行进一步的分析。为了减少计算量,采用了多处理器环境和基本特征选择方法。与其他机器学习技术相比,使用改进FDT的预测精度在80%以上,结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein model assessment via machine learning techniques
We attempt to solve the problem of protein model assessment using machine learning techniques and information from sequence and structure of the protein. The goal is to generate a machine that understands structures from PDB and given a new model, predicts whether or not it belongs to the class of PDB structures. We show two such machines (SVM and FDT); results appear promising for further analysis. To reduce computational overhead, multiprocessor environment and basic feature selection method is used. The prediction accuracy using improved FDT is above 80% and results are better when compared with other machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信