参数化复杂性:系统地面对计算难解性的框架

R. Downey, M. Fellows, U. Stege
{"title":"参数化复杂性:系统地面对计算难解性的框架","authors":"R. Downey, M. Fellows, U. Stege","doi":"10.1090/dimacs/049/04","DOIUrl":null,"url":null,"abstract":"In this paper we give a programmatic overview of parame-terized computational complexity in the broad context of the problem of coping with computational intractability. We give some examples of how xed-parameter tractability techniques can deliver practical algorithms in two diierent ways: (1) by providing useful exact algorithms for small parameter ranges, and (2) by providing guidance in the design of heuristic algorithms. In particular, we describe an improved FPT ker-nelization algorithm for Vertex Cover, a practical FPT algorithm for the Maximum Agreement Subtree (MAST) problem parameterized by the number of species to be deleted, and new general heuristics for these problems based on FPT techniques. In the course of making this overview, we also investigate some structural and hardness issues. We prove that an important naturally parameterized problem in artiicial intelligence, STRIPS Planning (where the parameter is the size of the plan) is complete for W1]. As a corollary, this implies that k-Step Reachability for Petri Nets is complete for W1]. We describe how the concept of treewidth can be applied to STRIPS Planning and other problems of logic to obtain FPT results. We describe a surprising structural result concerning the top end of the parameterized complexity hierarchy: the naturally parameterized Graph k-Coloring problem cannot be resolved with respect to XP either by showing membership in XP, or by showing hardness for XP without settling the P = NP question one way or the other.","PeriodicalId":144845,"journal":{"name":"Contemporary Trends in Discrete Mathematics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"195","resultStr":"{\"title\":\"Parameterized complexity: A framework for systematically confronting computational intractability\",\"authors\":\"R. Downey, M. Fellows, U. Stege\",\"doi\":\"10.1090/dimacs/049/04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a programmatic overview of parame-terized computational complexity in the broad context of the problem of coping with computational intractability. We give some examples of how xed-parameter tractability techniques can deliver practical algorithms in two diierent ways: (1) by providing useful exact algorithms for small parameter ranges, and (2) by providing guidance in the design of heuristic algorithms. In particular, we describe an improved FPT ker-nelization algorithm for Vertex Cover, a practical FPT algorithm for the Maximum Agreement Subtree (MAST) problem parameterized by the number of species to be deleted, and new general heuristics for these problems based on FPT techniques. In the course of making this overview, we also investigate some structural and hardness issues. We prove that an important naturally parameterized problem in artiicial intelligence, STRIPS Planning (where the parameter is the size of the plan) is complete for W1]. As a corollary, this implies that k-Step Reachability for Petri Nets is complete for W1]. We describe how the concept of treewidth can be applied to STRIPS Planning and other problems of logic to obtain FPT results. We describe a surprising structural result concerning the top end of the parameterized complexity hierarchy: the naturally parameterized Graph k-Coloring problem cannot be resolved with respect to XP either by showing membership in XP, or by showing hardness for XP without settling the P = NP question one way or the other.\",\"PeriodicalId\":144845,\"journal\":{\"name\":\"Contemporary Trends in Discrete Mathematics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"195\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Trends in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/049/04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Trends in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/049/04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 195

摘要

在本文中,我们给出了在处理计算难易性问题的广泛背景下参数化计算复杂性的编程概述。我们给出了一些例子,说明x参数可跟踪性技术如何以两种不同的方式提供实用的算法:(1)通过为小参数范围提供有用的精确算法,以及(2)通过在启发式算法的设计中提供指导。特别地,我们描述了一种改进的FPT顶点覆盖的核化算法,一种实用的FPT算法,用于最大一致子树(MAST)问题,该问题由待删除物种的数量参数化,以及基于FPT技术的新的通用启发式算法。在概述的过程中,我们还研究了一些结构和硬度问题。我们证明了人工智能中一个重要的自然参数化问题,条带规划(其中参数是计划的大小)对于W1是完整的。作为推论,这意味着对于W1] Petri网的k步可达性是完全的。我们描述了如何将树宽的概念应用于条带规划和其他逻辑问题以获得FPT结果。我们描述了一个关于参数化复杂度层次顶端的令人惊讶的结构结果:自然参数化图k-着色问题不能通过显示XP中的隶属性来解决,也不能通过显示XP的硬度来解决,而不以一种或另一种方式解决P = NP问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterized complexity: A framework for systematically confronting computational intractability
In this paper we give a programmatic overview of parame-terized computational complexity in the broad context of the problem of coping with computational intractability. We give some examples of how xed-parameter tractability techniques can deliver practical algorithms in two diierent ways: (1) by providing useful exact algorithms for small parameter ranges, and (2) by providing guidance in the design of heuristic algorithms. In particular, we describe an improved FPT ker-nelization algorithm for Vertex Cover, a practical FPT algorithm for the Maximum Agreement Subtree (MAST) problem parameterized by the number of species to be deleted, and new general heuristics for these problems based on FPT techniques. In the course of making this overview, we also investigate some structural and hardness issues. We prove that an important naturally parameterized problem in artiicial intelligence, STRIPS Planning (where the parameter is the size of the plan) is complete for W1]. As a corollary, this implies that k-Step Reachability for Petri Nets is complete for W1]. We describe how the concept of treewidth can be applied to STRIPS Planning and other problems of logic to obtain FPT results. We describe a surprising structural result concerning the top end of the parameterized complexity hierarchy: the naturally parameterized Graph k-Coloring problem cannot be resolved with respect to XP either by showing membership in XP, or by showing hardness for XP without settling the P = NP question one way or the other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信