{"title":"应用于分类和强化学习的新颖组织分类器:走向灵活的算法","authors":"Danilo Vasconcellos Vargas, H. Takano, J. Murata","doi":"10.1145/2598394.2598429","DOIUrl":null,"url":null,"abstract":"It is widely known that reinforcement learning is a more general problem than supervised learning. In fact, supervised learning can be seen as a class of reinforcement learning problems. However, only a couple of papers tested reinforcement learning algorithms in supervised learning problems. Here we propose a new and simpler way to abstract supervised learning for any reinforcement learning algorithm. Moreover, a new algorithm called Novelty-Organizing Classifiers is developed based on a Novelty Map population that focuses more on the novelty of the inputs than their frequency. A comparison of the proposed method with Self-Organizing Classifiers and BioHel on some datasets is presented. Even though BioHel is specialized in solving supervised learning problems, the results showed only a trade-off between the algorithms. Lastly, results on a maze problem validate the flexibility of the proposed algorithm beyond supervised learning problems. Thus, Novelty-Organizing Classifiers is capable of solving many supervised learning problems as well as a maze problem without changing any parameter at all. Considering the fact that no adaptation of parameters was executed, the proposed algorithm's basis seems interestingly flexible.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novelty-organizing classifiers applied to classification and reinforcement learning: towards flexible algorithms\",\"authors\":\"Danilo Vasconcellos Vargas, H. Takano, J. Murata\",\"doi\":\"10.1145/2598394.2598429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is widely known that reinforcement learning is a more general problem than supervised learning. In fact, supervised learning can be seen as a class of reinforcement learning problems. However, only a couple of papers tested reinforcement learning algorithms in supervised learning problems. Here we propose a new and simpler way to abstract supervised learning for any reinforcement learning algorithm. Moreover, a new algorithm called Novelty-Organizing Classifiers is developed based on a Novelty Map population that focuses more on the novelty of the inputs than their frequency. A comparison of the proposed method with Self-Organizing Classifiers and BioHel on some datasets is presented. Even though BioHel is specialized in solving supervised learning problems, the results showed only a trade-off between the algorithms. Lastly, results on a maze problem validate the flexibility of the proposed algorithm beyond supervised learning problems. Thus, Novelty-Organizing Classifiers is capable of solving many supervised learning problems as well as a maze problem without changing any parameter at all. Considering the fact that no adaptation of parameters was executed, the proposed algorithm's basis seems interestingly flexible.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novelty-organizing classifiers applied to classification and reinforcement learning: towards flexible algorithms
It is widely known that reinforcement learning is a more general problem than supervised learning. In fact, supervised learning can be seen as a class of reinforcement learning problems. However, only a couple of papers tested reinforcement learning algorithms in supervised learning problems. Here we propose a new and simpler way to abstract supervised learning for any reinforcement learning algorithm. Moreover, a new algorithm called Novelty-Organizing Classifiers is developed based on a Novelty Map population that focuses more on the novelty of the inputs than their frequency. A comparison of the proposed method with Self-Organizing Classifiers and BioHel on some datasets is presented. Even though BioHel is specialized in solving supervised learning problems, the results showed only a trade-off between the algorithms. Lastly, results on a maze problem validate the flexibility of the proposed algorithm beyond supervised learning problems. Thus, Novelty-Organizing Classifiers is capable of solving many supervised learning problems as well as a maze problem without changing any parameter at all. Considering the fact that no adaptation of parameters was executed, the proposed algorithm's basis seems interestingly flexible.