{"title":"一个针对丘陵和山区环境的特定站点MIMO信道模拟器","authors":"Jonathan S. Lu, H. Bertoni","doi":"10.1109/MILCOM.2013.135","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time site-specific MIMO channel simulator for communication links in rural environments. This simulator first predicts the delay, angle of arrival and departure, and amplitude of the individual multipath arrivals (direct, ground reflected, terrain diffracted, and terrain scattered) for a specified multiple antenna receiver and transmitter link. The predicted multipath characteristics are then used to compute the tapped delay line coefficients and/or frequency responses of the channel between each transmitter antenna and receiver antenna pair, which are the outputs of the simulator. To demonstrate the use of this simulator, Monte Carlo simulations of SISO and MIMO channel capacity for many databases are performed. Conclusions are drawn on the relationship between capacity, terrain roughness and other channel characteristics.","PeriodicalId":379382,"journal":{"name":"MILCOM 2013 - 2013 IEEE Military Communications Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Site-Specific MIMO Channel Simulator for Hilly and Mountainous Environments\",\"authors\":\"Jonathan S. Lu, H. Bertoni\",\"doi\":\"10.1109/MILCOM.2013.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real-time site-specific MIMO channel simulator for communication links in rural environments. This simulator first predicts the delay, angle of arrival and departure, and amplitude of the individual multipath arrivals (direct, ground reflected, terrain diffracted, and terrain scattered) for a specified multiple antenna receiver and transmitter link. The predicted multipath characteristics are then used to compute the tapped delay line coefficients and/or frequency responses of the channel between each transmitter antenna and receiver antenna pair, which are the outputs of the simulator. To demonstrate the use of this simulator, Monte Carlo simulations of SISO and MIMO channel capacity for many databases are performed. Conclusions are drawn on the relationship between capacity, terrain roughness and other channel characteristics.\",\"PeriodicalId\":379382,\"journal\":{\"name\":\"MILCOM 2013 - 2013 IEEE Military Communications Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2013 - 2013 IEEE Military Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2013.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2013 - 2013 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2013.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Site-Specific MIMO Channel Simulator for Hilly and Mountainous Environments
This paper presents a real-time site-specific MIMO channel simulator for communication links in rural environments. This simulator first predicts the delay, angle of arrival and departure, and amplitude of the individual multipath arrivals (direct, ground reflected, terrain diffracted, and terrain scattered) for a specified multiple antenna receiver and transmitter link. The predicted multipath characteristics are then used to compute the tapped delay line coefficients and/or frequency responses of the channel between each transmitter antenna and receiver antenna pair, which are the outputs of the simulator. To demonstrate the use of this simulator, Monte Carlo simulations of SISO and MIMO channel capacity for many databases are performed. Conclusions are drawn on the relationship between capacity, terrain roughness and other channel characteristics.