模拟电磁波在生物组织中的传播的平面和时域有限差分技术的比较

M. O’halloran, M. Glavin, E. Jones
{"title":"模拟电磁波在生物组织中的传播的平面和时域有限差分技术的比较","authors":"M. O’halloran, M. Glavin, E. Jones","doi":"10.1109/MIKON.2006.4345363","DOIUrl":null,"url":null,"abstract":"Due to the recent advances in ultra wide-band (UWB) radar technologies, there has been widespread interest in the possible medical applications of UWB microwave radar. Therefore, the development of accurate numerical techniques to predict the propagation of UWB signals in biological tissue is of great interest to researchers as an aid in developing signal processing algorithms. Two techniques for modeling the propagation of electromagnetic (EM) waves in human tissue are presented and compared in this paper: the planar and finite difference time domain (FDTD) technique. A four layer biological model is considered, three layers of normal tissue, and one layer of cancerous soft tissue (sarcoma). The two modeling techniques are used to predict the response of the model to the UWB input signal, with particular focus on the response of the sarcoma layer. Both the Planar technique and the FDTD technique identify the presence of the soft tissue sarcoma quite easily. However the FDTD technique predicts more subtle phenomena such as multiple reflections, albeit at a high computational cost.","PeriodicalId":315003,"journal":{"name":"2006 International Conference on Microwaves, Radar & Wireless Communications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of A Planar and Finite Difference Time Domain Technique to Simulate the Propagation of Electromagnetic Waves in Biological Tissue\",\"authors\":\"M. O’halloran, M. Glavin, E. Jones\",\"doi\":\"10.1109/MIKON.2006.4345363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the recent advances in ultra wide-band (UWB) radar technologies, there has been widespread interest in the possible medical applications of UWB microwave radar. Therefore, the development of accurate numerical techniques to predict the propagation of UWB signals in biological tissue is of great interest to researchers as an aid in developing signal processing algorithms. Two techniques for modeling the propagation of electromagnetic (EM) waves in human tissue are presented and compared in this paper: the planar and finite difference time domain (FDTD) technique. A four layer biological model is considered, three layers of normal tissue, and one layer of cancerous soft tissue (sarcoma). The two modeling techniques are used to predict the response of the model to the UWB input signal, with particular focus on the response of the sarcoma layer. Both the Planar technique and the FDTD technique identify the presence of the soft tissue sarcoma quite easily. However the FDTD technique predicts more subtle phenomena such as multiple reflections, albeit at a high computational cost.\",\"PeriodicalId\":315003,\"journal\":{\"name\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIKON.2006.4345363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microwaves, Radar & Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIKON.2006.4345363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着超宽带(UWB)雷达技术的不断发展,超宽带微波雷达在医学上的应用前景受到了广泛关注。因此,发展精确的数值技术来预测超宽带信号在生物组织中的传播是研究人员非常感兴趣的,因为它有助于开发信号处理算法。本文介绍并比较了电磁波在人体组织中传播的两种建模技术:平面法和时域有限差分法。考虑四层生物模型,三层正常组织,一层癌性软组织(肉瘤)。这两种建模技术用于预测模型对超宽带输入信号的响应,特别关注肉瘤层的响应。平面法和时域有限差分法都能很容易地识别软组织肉瘤的存在。然而,时域有限差分技术预测更微妙的现象,如多次反射,尽管在高计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of A Planar and Finite Difference Time Domain Technique to Simulate the Propagation of Electromagnetic Waves in Biological Tissue
Due to the recent advances in ultra wide-band (UWB) radar technologies, there has been widespread interest in the possible medical applications of UWB microwave radar. Therefore, the development of accurate numerical techniques to predict the propagation of UWB signals in biological tissue is of great interest to researchers as an aid in developing signal processing algorithms. Two techniques for modeling the propagation of electromagnetic (EM) waves in human tissue are presented and compared in this paper: the planar and finite difference time domain (FDTD) technique. A four layer biological model is considered, three layers of normal tissue, and one layer of cancerous soft tissue (sarcoma). The two modeling techniques are used to predict the response of the model to the UWB input signal, with particular focus on the response of the sarcoma layer. Both the Planar technique and the FDTD technique identify the presence of the soft tissue sarcoma quite easily. However the FDTD technique predicts more subtle phenomena such as multiple reflections, albeit at a high computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信