工作空间中机械手的自适应神经预测控制

Horiyeh Mazdarani, M. Farrokhi
{"title":"工作空间中机械手的自适应神经预测控制","authors":"Horiyeh Mazdarani, M. Farrokhi","doi":"10.1109/MMAR.2012.6347864","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive Nonlinear Model Predictive Controller (NMPC) for hybrid position/velocity control of robot manipulators. Robot dynamics have generally uncertainties, including parameters variations, unknown nonlinearities of the robot, payload variations, and torque disturbances form the environment. The cost function of the NMPC is defined in such a way that by adjusting its weighting parameters, the end-effector of the robot tracks a predefined geometry path in Cartesian space with a constant velocity. Moreover, in order to cope with uncertainties in the robot model neural networks with Levenberg-Marquardt training algorithm will be used to estimate adaptively the model of the robot. The closed-loop stability is demonstrated using Lyapunov theory. Simulation results of the proposed control method applied to a 3-DOF manipulator actuated by DC servomotors show satisfactory results for trajectory tracking in work space of the robot.","PeriodicalId":305110,"journal":{"name":"2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive neuro-predictive control of robot manipulators in work space\",\"authors\":\"Horiyeh Mazdarani, M. Farrokhi\",\"doi\":\"10.1109/MMAR.2012.6347864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an adaptive Nonlinear Model Predictive Controller (NMPC) for hybrid position/velocity control of robot manipulators. Robot dynamics have generally uncertainties, including parameters variations, unknown nonlinearities of the robot, payload variations, and torque disturbances form the environment. The cost function of the NMPC is defined in such a way that by adjusting its weighting parameters, the end-effector of the robot tracks a predefined geometry path in Cartesian space with a constant velocity. Moreover, in order to cope with uncertainties in the robot model neural networks with Levenberg-Marquardt training algorithm will be used to estimate adaptively the model of the robot. The closed-loop stability is demonstrated using Lyapunov theory. Simulation results of the proposed control method applied to a 3-DOF manipulator actuated by DC servomotors show satisfactory results for trajectory tracking in work space of the robot.\",\"PeriodicalId\":305110,\"journal\":{\"name\":\"2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2012.6347864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2012.6347864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出一种用于机器人机械手位置/速度混合控制的自适应非线性模型预测控制器(NMPC)。机器人动力学通常具有不确定性,包括参数变化、机器人的未知非线性、有效载荷变化和来自环境的扭矩干扰。NMPC的成本函数是这样定义的,通过调整其权重参数,机器人的末端执行器在笛卡尔空间中以恒定速度跟踪预定义的几何路径。此外,为了应对机器人模型中的不确定性,将使用Levenberg-Marquardt训练算法的神经网络自适应估计机器人的模型。利用李雅普诺夫理论证明了闭环的稳定性。将所提出的控制方法应用于由直流伺服电机驱动的三自由度机械臂的仿真结果表明,该控制方法对机器人在工作空间中的轨迹跟踪效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive neuro-predictive control of robot manipulators in work space
This paper proposes an adaptive Nonlinear Model Predictive Controller (NMPC) for hybrid position/velocity control of robot manipulators. Robot dynamics have generally uncertainties, including parameters variations, unknown nonlinearities of the robot, payload variations, and torque disturbances form the environment. The cost function of the NMPC is defined in such a way that by adjusting its weighting parameters, the end-effector of the robot tracks a predefined geometry path in Cartesian space with a constant velocity. Moreover, in order to cope with uncertainties in the robot model neural networks with Levenberg-Marquardt training algorithm will be used to estimate adaptively the model of the robot. The closed-loop stability is demonstrated using Lyapunov theory. Simulation results of the proposed control method applied to a 3-DOF manipulator actuated by DC servomotors show satisfactory results for trajectory tracking in work space of the robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信