EXPO-AGRI:智能自动温室控制

A. Castellini, A. Farinelli, G. Minuto, D. Quaglia, Iseo Secco, F. Tinivella
{"title":"EXPO-AGRI:智能自动温室控制","authors":"A. Castellini, A. Farinelli, G. Minuto, D. Quaglia, Iseo Secco, F. Tinivella","doi":"10.1109/BIOCAS.2017.8325181","DOIUrl":null,"url":null,"abstract":"Predicting and controlling plant behavior in controlled environments is a growing requirement in precision agriculture. In this context sensor networks and artificial intelligence methods represent key aspects for optimizing the processes of data acquisition, mathematical modeling and decision making. In this paper we present a general architecture for automatic greenhouse control. In particular, we focus on a preliminary model for predicting the risk of new infections of downy mildew of basil (Peronospora belbahrii) on sweet basil. The architecture has three main elements of innovation: new kinds of sensors are used to extract information about the state of the plants, model predictors are generated from this information by non-trivial processing methods, and informative predictors are automatically selected using regularization techniques.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EXPO-AGRI: Smart automatic greenhouse control\",\"authors\":\"A. Castellini, A. Farinelli, G. Minuto, D. Quaglia, Iseo Secco, F. Tinivella\",\"doi\":\"10.1109/BIOCAS.2017.8325181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting and controlling plant behavior in controlled environments is a growing requirement in precision agriculture. In this context sensor networks and artificial intelligence methods represent key aspects for optimizing the processes of data acquisition, mathematical modeling and decision making. In this paper we present a general architecture for automatic greenhouse control. In particular, we focus on a preliminary model for predicting the risk of new infections of downy mildew of basil (Peronospora belbahrii) on sweet basil. The architecture has three main elements of innovation: new kinds of sensors are used to extract information about the state of the plants, model predictors are generated from this information by non-trivial processing methods, and informative predictors are automatically selected using regularization techniques.\",\"PeriodicalId\":361477,\"journal\":{\"name\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

预测和控制受控环境下植物的行为是精准农业日益增长的需求。在这种情况下,传感器网络和人工智能方法代表了优化数据采集、数学建模和决策过程的关键方面。在本文中,我们提出了一个温室自动控制的一般架构。特别地,我们集中在一个初步模型预测罗勒霜霉病(Peronospora belbahrii)在甜罗勒上的新感染风险。该体系结构有三个主要的创新元素:新型传感器用于提取有关植物状态的信息,通过非平凡处理方法从这些信息生成模型预测器,以及使用正则化技术自动选择信息预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXPO-AGRI: Smart automatic greenhouse control
Predicting and controlling plant behavior in controlled environments is a growing requirement in precision agriculture. In this context sensor networks and artificial intelligence methods represent key aspects for optimizing the processes of data acquisition, mathematical modeling and decision making. In this paper we present a general architecture for automatic greenhouse control. In particular, we focus on a preliminary model for predicting the risk of new infections of downy mildew of basil (Peronospora belbahrii) on sweet basil. The architecture has three main elements of innovation: new kinds of sensors are used to extract information about the state of the plants, model predictors are generated from this information by non-trivial processing methods, and informative predictors are automatically selected using regularization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信