基于动态嵌入表示学习的MOOC辍学率预测

Lin Wang, Zhengfei Yu, Mengru Wang, Xixi Zhu, Yun Zhou
{"title":"基于动态嵌入表示学习的MOOC辍学率预测","authors":"Lin Wang, Zhengfei Yu, Mengru Wang, Xixi Zhu, Yun Zhou","doi":"10.1145/3487075.3487141","DOIUrl":null,"url":null,"abstract":"Massive Open Online Courses (MOOCs) received great attentions in recent years. Most MOOCs have huge number of participants, which usually introduce another challenge—the extremely high dropout rate. Thus, people use a large amount of user-item interaction data collected from the MOOC platform to predict the dropout behaviors for further analysis. Dynamic embedding representation learning presents an attractive opportunity to model the dynamic evolution of users and items, where each user (item) can be embedded in a Euclidean space. This article introduces and analyzes the application of the joint dynamic user-item embedding algorithm in the MOOC dropout prediction. The empirical results indicated that the model has low dependence on data volume. Moreover, the model is robust to label-flipping attacks. Therefore, we believe that the model performances under different settings can be used to guide the real-world MOOC dropout prediction.","PeriodicalId":354966,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MOOC Dropout Prediction Based on Dynamic Embedding Representation Learning\",\"authors\":\"Lin Wang, Zhengfei Yu, Mengru Wang, Xixi Zhu, Yun Zhou\",\"doi\":\"10.1145/3487075.3487141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive Open Online Courses (MOOCs) received great attentions in recent years. Most MOOCs have huge number of participants, which usually introduce another challenge—the extremely high dropout rate. Thus, people use a large amount of user-item interaction data collected from the MOOC platform to predict the dropout behaviors for further analysis. Dynamic embedding representation learning presents an attractive opportunity to model the dynamic evolution of users and items, where each user (item) can be embedded in a Euclidean space. This article introduces and analyzes the application of the joint dynamic user-item embedding algorithm in the MOOC dropout prediction. The empirical results indicated that the model has low dependence on data volume. Moreover, the model is robust to label-flipping attacks. Therefore, we believe that the model performances under different settings can be used to guide the real-world MOOC dropout prediction.\",\"PeriodicalId\":354966,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Computer Science and Application Engineering\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Computer Science and Application Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487075.3487141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487075.3487141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,大规模在线开放课程(MOOCs)受到了广泛关注。大多数mooc都有大量的参与者,这通常会带来另一个挑战——极高的辍学率。因此,人们使用从MOOC平台收集的大量用户-物品交互数据来预测退学行为,以便进一步分析。动态嵌入表示学习提供了一个有吸引力的机会来模拟用户和项目的动态演变,其中每个用户(项目)可以嵌入到欧几里德空间中。本文介绍并分析了联合动态用户项嵌入算法在MOOC辍学预测中的应用。实证结果表明,该模型对数据量的依赖性较低。此外,该模型对标签翻转攻击具有鲁棒性。因此,我们认为不同设置下的模型性能可以用来指导现实世界的MOOC辍学预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOOC Dropout Prediction Based on Dynamic Embedding Representation Learning
Massive Open Online Courses (MOOCs) received great attentions in recent years. Most MOOCs have huge number of participants, which usually introduce another challenge—the extremely high dropout rate. Thus, people use a large amount of user-item interaction data collected from the MOOC platform to predict the dropout behaviors for further analysis. Dynamic embedding representation learning presents an attractive opportunity to model the dynamic evolution of users and items, where each user (item) can be embedded in a Euclidean space. This article introduces and analyzes the application of the joint dynamic user-item embedding algorithm in the MOOC dropout prediction. The empirical results indicated that the model has low dependence on data volume. Moreover, the model is robust to label-flipping attacks. Therefore, we believe that the model performances under different settings can be used to guide the real-world MOOC dropout prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信