基于DPTNet的稀疏注意语音分离

Beom Jun Woo, H. Kim, Jeunghun Kim, N. Kim
{"title":"基于DPTNet的稀疏注意语音分离","authors":"Beom Jun Woo, H. Kim, Jeunghun Kim, N. Kim","doi":"10.1109/IC-NIDC54101.2021.9660488","DOIUrl":null,"url":null,"abstract":"This paper presents a sparse attention-based speech separation algorithm separating and generating clean speech from mixed audio containing speech from multiple speakers. Recent development of deep learning has enabled several speech separation models to generate clean speech audios. Especially speech separation models based on transformer show high performance due to their ability to learn long term dependencies compared with other neural network structures. However, as a transformer with self-attention falls short of catching short-term dependencies, we adopt sparse attention structure to the original transformer-based speech separation model. We show that the model with sparse attention outperforms the original full attention method.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speech Separation Based on DPTNet with Sparse Attention\",\"authors\":\"Beom Jun Woo, H. Kim, Jeunghun Kim, N. Kim\",\"doi\":\"10.1109/IC-NIDC54101.2021.9660488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sparse attention-based speech separation algorithm separating and generating clean speech from mixed audio containing speech from multiple speakers. Recent development of deep learning has enabled several speech separation models to generate clean speech audios. Especially speech separation models based on transformer show high performance due to their ability to learn long term dependencies compared with other neural network structures. However, as a transformer with self-attention falls short of catching short-term dependencies, we adopt sparse attention structure to the original transformer-based speech separation model. We show that the model with sparse attention outperforms the original full attention method.\",\"PeriodicalId\":264468,\"journal\":{\"name\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NIDC54101.2021.9660488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于稀疏注意力的语音分离算法,从包含多个说话人语音的混合音频中分离并生成干净的语音。深度学习的最新发展使几种语音分离模型能够生成干净的语音音频。特别是基于变压器的语音分离模型,由于其学习长期依赖关系的能力,与其他神经网络结构相比,表现出了较高的性能。然而,由于具有自注意的变压器无法捕捉短期依赖关系,我们对原有的基于变压器的语音分离模型采用了稀疏注意结构。结果表明,稀疏注意模型优于原全注意模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Separation Based on DPTNet with Sparse Attention
This paper presents a sparse attention-based speech separation algorithm separating and generating clean speech from mixed audio containing speech from multiple speakers. Recent development of deep learning has enabled several speech separation models to generate clean speech audios. Especially speech separation models based on transformer show high performance due to their ability to learn long term dependencies compared with other neural network structures. However, as a transformer with self-attention falls short of catching short-term dependencies, we adopt sparse attention structure to the original transformer-based speech separation model. We show that the model with sparse attention outperforms the original full attention method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信