通过属性参数化学习个人搜索中的用户交互

Michael Bendersky, Xuanhui Wang, Donald Metzler, Marc Najork
{"title":"通过属性参数化学习个人搜索中的用户交互","authors":"Michael Bendersky, Xuanhui Wang, Donald Metzler, Marc Najork","doi":"10.1145/3018661.3018712","DOIUrl":null,"url":null,"abstract":"User interaction data (e.g., click data) has proven to be a powerful signal for learning-to-rank models in web search. However, such models require observing multiple interactions across many users for the same query-document pair to achieve statistically meaningful gains. Therefore, utilizing user interaction data for improving search over personal, rather than public, content is a challenging problem. First, the documents (e.g., emails or private files) are not shared across users. Second, user search queries are of personal nature (e.g., \"alice's address\") and may not generalize well across users. In this paper, we propose a solution to these challenges, by projecting user queries and documents into a multi-dimensional space of fine-grained and semantically coherent attributes. We then introduce a novel parameterization technique to overcome sparsity in the multi-dimensional attribute space. Attribute parameterization enables effective usage of cross-user interactions for improving personal search quality -- which is a first such published result, to the best of our knowledge. Experiments with a dataset derived from interactions of users of one of the world's largest personal search engines demonstrate the effectiveness of the proposed attribute parameterization technique.","PeriodicalId":344017,"journal":{"name":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Learning from User Interactions in Personal Search via Attribute Parameterization\",\"authors\":\"Michael Bendersky, Xuanhui Wang, Donald Metzler, Marc Najork\",\"doi\":\"10.1145/3018661.3018712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User interaction data (e.g., click data) has proven to be a powerful signal for learning-to-rank models in web search. However, such models require observing multiple interactions across many users for the same query-document pair to achieve statistically meaningful gains. Therefore, utilizing user interaction data for improving search over personal, rather than public, content is a challenging problem. First, the documents (e.g., emails or private files) are not shared across users. Second, user search queries are of personal nature (e.g., \\\"alice's address\\\") and may not generalize well across users. In this paper, we propose a solution to these challenges, by projecting user queries and documents into a multi-dimensional space of fine-grained and semantically coherent attributes. We then introduce a novel parameterization technique to overcome sparsity in the multi-dimensional attribute space. Attribute parameterization enables effective usage of cross-user interactions for improving personal search quality -- which is a first such published result, to the best of our knowledge. Experiments with a dataset derived from interactions of users of one of the world's largest personal search engines demonstrate the effectiveness of the proposed attribute parameterization technique.\",\"PeriodicalId\":344017,\"journal\":{\"name\":\"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018661.3018712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018661.3018712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

用户交互数据(例如,点击数据)已被证明是网络搜索中学习排名模型的一个强大信号。然而,这样的模型需要观察许多用户对同一查询文档对的多个交互,以获得统计上有意义的收益。因此,利用用户交互数据来改进对个人而非公共内容的搜索是一个具有挑战性的问题。首先,文档(例如,电子邮件或私人文件)不会在用户之间共享。其次,用户搜索查询具有个人性质(例如,“alice的地址”),可能无法很好地概括用户。在本文中,我们提出了一种解决方案,通过将用户查询和文档投影到一个由细粒度和语义一致的属性组成的多维空间中。然后,我们引入了一种新的参数化技术来克服多维属性空间中的稀疏性。属性参数化可以有效地利用跨用户交互来提高个人搜索质量——据我们所知,这是第一次发布这样的结果。使用来自世界上最大的个人搜索引擎之一的用户交互的数据集进行的实验证明了所提出的属性参数化技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning from User Interactions in Personal Search via Attribute Parameterization
User interaction data (e.g., click data) has proven to be a powerful signal for learning-to-rank models in web search. However, such models require observing multiple interactions across many users for the same query-document pair to achieve statistically meaningful gains. Therefore, utilizing user interaction data for improving search over personal, rather than public, content is a challenging problem. First, the documents (e.g., emails or private files) are not shared across users. Second, user search queries are of personal nature (e.g., "alice's address") and may not generalize well across users. In this paper, we propose a solution to these challenges, by projecting user queries and documents into a multi-dimensional space of fine-grained and semantically coherent attributes. We then introduce a novel parameterization technique to overcome sparsity in the multi-dimensional attribute space. Attribute parameterization enables effective usage of cross-user interactions for improving personal search quality -- which is a first such published result, to the best of our knowledge. Experiments with a dataset derived from interactions of users of one of the world's largest personal search engines demonstrate the effectiveness of the proposed attribute parameterization technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信