Tiago Barbosa de Lima, Ingrid Luana Almeida da Silva, Elyda Laisa Soares Xavier Freitas, Rafael Ferreira Mello
{"title":"自动写作评估:系统回顾","authors":"Tiago Barbosa de Lima, Ingrid Luana Almeida da Silva, Elyda Laisa Soares Xavier Freitas, Rafael Ferreira Mello","doi":"10.5753/rbie.2023.2869","DOIUrl":null,"url":null,"abstract":"A Avaliação Automática de Redação (do inglês, Automatic Essay Scoring - AES) tem sido tema amplamente explorado na literatura. Ela permite dispensar o esforço humano aplicado na correção de um grande número de redações em um curto espaço de tempo. A maior parte dos trabalhos se concentra no esforço de desenvolver algoritmos que sejam capazes de corrigir automaticamente textos em inglês. No entanto, para a língua portuguesa, essa ainda é uma área que está em desenvolvimento. Neste contexto, este artigo apresenta um Mapeamento Sistemático da Literatura que busca identificar as abordagens de Inteligência Artificial que estão sendo utilizadas para oferecer suporte à avaliação de redações escritas na língua portuguesa. Os principais achados deste artigo incluem os seguintes fatos: (i) as abordagens dos trabalhos selecionados costumam focar no uso de atributos extraídos do texto em vez do uso de modelos pré-treinados baseados em Deep Learning; (ii) existe prevalência de métricas tradicionais, como Precisão, Cobertura e F-Measure na validação dos resultados; (iii) os feedbacks gerados pelas abordagens possuem um baixo detalhamento; e (iv) os artigos selecionados não analisam o impacto prático em aplicações do mundo real.","PeriodicalId":383295,"journal":{"name":"Revista Brasileira de Informática na Educação","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avaliação Automática de Redação: Uma revisão sistemática\",\"authors\":\"Tiago Barbosa de Lima, Ingrid Luana Almeida da Silva, Elyda Laisa Soares Xavier Freitas, Rafael Ferreira Mello\",\"doi\":\"10.5753/rbie.2023.2869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Avaliação Automática de Redação (do inglês, Automatic Essay Scoring - AES) tem sido tema amplamente explorado na literatura. Ela permite dispensar o esforço humano aplicado na correção de um grande número de redações em um curto espaço de tempo. A maior parte dos trabalhos se concentra no esforço de desenvolver algoritmos que sejam capazes de corrigir automaticamente textos em inglês. No entanto, para a língua portuguesa, essa ainda é uma área que está em desenvolvimento. Neste contexto, este artigo apresenta um Mapeamento Sistemático da Literatura que busca identificar as abordagens de Inteligência Artificial que estão sendo utilizadas para oferecer suporte à avaliação de redações escritas na língua portuguesa. Os principais achados deste artigo incluem os seguintes fatos: (i) as abordagens dos trabalhos selecionados costumam focar no uso de atributos extraídos do texto em vez do uso de modelos pré-treinados baseados em Deep Learning; (ii) existe prevalência de métricas tradicionais, como Precisão, Cobertura e F-Measure na validação dos resultados; (iii) os feedbacks gerados pelas abordagens possuem um baixo detalhamento; e (iv) os artigos selecionados não analisam o impacto prático em aplicações do mundo real.\",\"PeriodicalId\":383295,\"journal\":{\"name\":\"Revista Brasileira de Informática na Educação\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Informática na Educação\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/rbie.2023.2869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Informática na Educação","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/rbie.2023.2869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Avaliação Automática de Redação: Uma revisão sistemática
A Avaliação Automática de Redação (do inglês, Automatic Essay Scoring - AES) tem sido tema amplamente explorado na literatura. Ela permite dispensar o esforço humano aplicado na correção de um grande número de redações em um curto espaço de tempo. A maior parte dos trabalhos se concentra no esforço de desenvolver algoritmos que sejam capazes de corrigir automaticamente textos em inglês. No entanto, para a língua portuguesa, essa ainda é uma área que está em desenvolvimento. Neste contexto, este artigo apresenta um Mapeamento Sistemático da Literatura que busca identificar as abordagens de Inteligência Artificial que estão sendo utilizadas para oferecer suporte à avaliação de redações escritas na língua portuguesa. Os principais achados deste artigo incluem os seguintes fatos: (i) as abordagens dos trabalhos selecionados costumam focar no uso de atributos extraídos do texto em vez do uso de modelos pré-treinados baseados em Deep Learning; (ii) existe prevalência de métricas tradicionais, como Precisão, Cobertura e F-Measure na validação dos resultados; (iii) os feedbacks gerados pelas abordagens possuem um baixo detalhamento; e (iv) os artigos selecionados não analisam o impacto prático em aplicações do mundo real.