米尔曼问题强化的反例

T. Gowers, K. Wyczesany
{"title":"米尔曼问题强化的反例","authors":"T. Gowers, K. Wyczesany","doi":"10.5802/ahl.168","DOIUrl":null,"url":null,"abstract":". — Let | · | be the standard Euclidean norm on R n and let X = ( R n , ∥ · ∥ ) be a normed space. A subspace Y ⊂ X is strongly α -Euclidean if there is a constant t such that t | y | ⩽ ∥ y ∥ ⩽ αt | y | for every y ∈ Y","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A counterexample to a strengthening of a question of V. D. Milman\",\"authors\":\"T. Gowers, K. Wyczesany\",\"doi\":\"10.5802/ahl.168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". — Let | · | be the standard Euclidean norm on R n and let X = ( R n , ∥ · ∥ ) be a normed space. A subspace Y ⊂ X is strongly α -Euclidean if there is a constant t such that t | y | ⩽ ∥ y ∥ ⩽ αt | y | for every y ∈ Y\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。-设|·|为rn上的标准欧氏范数,设X = (rn,∥·∥)为赋范空间。子空间Y∧X是强α -欧几里得的,如果存在一个常数t使得对于每一个Y∈Y, t∧| Y∈|≤∥Y∥≤αt | Y∈|
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A counterexample to a strengthening of a question of V. D. Milman
. — Let | · | be the standard Euclidean norm on R n and let X = ( R n , ∥ · ∥ ) be a normed space. A subspace Y ⊂ X is strongly α -Euclidean if there is a constant t such that t | y | ⩽ ∥ y ∥ ⩽ αt | y | for every y ∈ Y
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信