超大规模集成电路(VLSI)遗传布局算法解的表示

D. Zaporozhets, D. Zaruba, V. Kureichik
{"title":"超大规模集成电路(VLSI)遗传布局算法解的表示","authors":"D. Zaporozhets, D. Zaruba, V. Kureichik","doi":"10.1109/EWDTS.2014.7027053","DOIUrl":null,"url":null,"abstract":"The VLSI placement problem is presented in this article. A mechanism of representation of solutions for further genetic algorithm implementation is described. The proposed encoding algorithm is based on a placement tree and reverse Polish notation. The decoding algorithm is implemented in two stages: twinning of elements in macroblocks and calculation of real coordinates of elements. Experimental results show time-response characteristics of the proposed coding and decoding mechanisms. The time complexity of the encoding algorithm is represented by O(n) whereas the time complexity of the decoding algorithm is represented by O(n log n), where n is the number of elements.","PeriodicalId":272780,"journal":{"name":"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Representation of solutions in genetic VLSI placement algorithms\",\"authors\":\"D. Zaporozhets, D. Zaruba, V. Kureichik\",\"doi\":\"10.1109/EWDTS.2014.7027053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The VLSI placement problem is presented in this article. A mechanism of representation of solutions for further genetic algorithm implementation is described. The proposed encoding algorithm is based on a placement tree and reverse Polish notation. The decoding algorithm is implemented in two stages: twinning of elements in macroblocks and calculation of real coordinates of elements. Experimental results show time-response characteristics of the proposed coding and decoding mechanisms. The time complexity of the encoding algorithm is represented by O(n) whereas the time complexity of the decoding algorithm is represented by O(n log n), where n is the number of elements.\",\"PeriodicalId\":272780,\"journal\":{\"name\":\"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EWDTS.2014.7027053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWDTS.2014.7027053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了超大规模集成电路的安装问题。描述了进一步实现遗传算法的解的表示机制。所提出的编码算法基于放置树和反向波兰表示法。解码算法分两个阶段实现:宏块中元素的孪生和元素实坐标的计算。实验结果显示了所提出的编码和解码机制的时间响应特性。编码算法的时间复杂度用O(n)表示,解码算法的时间复杂度用O(n log n)表示,其中n为元素个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation of solutions in genetic VLSI placement algorithms
The VLSI placement problem is presented in this article. A mechanism of representation of solutions for further genetic algorithm implementation is described. The proposed encoding algorithm is based on a placement tree and reverse Polish notation. The decoding algorithm is implemented in two stages: twinning of elements in macroblocks and calculation of real coordinates of elements. Experimental results show time-response characteristics of the proposed coding and decoding mechanisms. The time complexity of the encoding algorithm is represented by O(n) whereas the time complexity of the decoding algorithm is represented by O(n log n), where n is the number of elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信