Maguell L. T. L. Sandifort, Jianquan Liu, Shoji Nishimura, Wolfgang Hürst
{"title":"基于熵模型的多摄像机游荡者检索","authors":"Maguell L. T. L. Sandifort, Jianquan Liu, Shoji Nishimura, Wolfgang Hürst","doi":"10.1145/3206025.3206049","DOIUrl":null,"url":null,"abstract":"Loitering is a suspicious behavior that often leads to criminal actions, such as pickpocketing and illegal entry. Tracking methods can determine suspicious behavior based on trajectory, but require continuous appearance and are difficult to scale up to multi-camera systems. Using the duration of appearance of features works on multiple cameras, but does not consider major aspects of loitering behavior, such as repeated appearance and trajectory of candidates. We introduce an entropy model that maps the location of a person's features on a heatmap. It can be used as an abstraction of trajectory tracking across multiple surveillance cameras. We evaluate our method over several datasets and compare it to other loitering detection methods. The results show that our approach has similar results to state of the art, but can provide additional interesting candidates.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Entropy Model for Loiterer Retrieval across Multiple Surveillance Cameras\",\"authors\":\"Maguell L. T. L. Sandifort, Jianquan Liu, Shoji Nishimura, Wolfgang Hürst\",\"doi\":\"10.1145/3206025.3206049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Loitering is a suspicious behavior that often leads to criminal actions, such as pickpocketing and illegal entry. Tracking methods can determine suspicious behavior based on trajectory, but require continuous appearance and are difficult to scale up to multi-camera systems. Using the duration of appearance of features works on multiple cameras, but does not consider major aspects of loitering behavior, such as repeated appearance and trajectory of candidates. We introduce an entropy model that maps the location of a person's features on a heatmap. It can be used as an abstraction of trajectory tracking across multiple surveillance cameras. We evaluate our method over several datasets and compare it to other loitering detection methods. The results show that our approach has similar results to state of the art, but can provide additional interesting candidates.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Entropy Model for Loiterer Retrieval across Multiple Surveillance Cameras
Loitering is a suspicious behavior that often leads to criminal actions, such as pickpocketing and illegal entry. Tracking methods can determine suspicious behavior based on trajectory, but require continuous appearance and are difficult to scale up to multi-camera systems. Using the duration of appearance of features works on multiple cameras, but does not consider major aspects of loitering behavior, such as repeated appearance and trajectory of candidates. We introduce an entropy model that maps the location of a person's features on a heatmap. It can be used as an abstraction of trajectory tracking across multiple surveillance cameras. We evaluate our method over several datasets and compare it to other loitering detection methods. The results show that our approach has similar results to state of the art, but can provide additional interesting candidates.