模型、理想化和客观机遇

J. Sprenger, S. Hartmann
{"title":"模型、理想化和客观机遇","authors":"J. Sprenger, S. Hartmann","doi":"10.1093/oso/9780199672110.003.0012","DOIUrl":null,"url":null,"abstract":"How does Bayesian inference handle the highly idealized nature of many (statistical) models in science? The standard interpretation of probability as degree of belief in the truth of a model does not seem to apply in such cases since all candidate models are most probably wrong. Similarly, it is not clear how chance-credence coordination works for the probabilities generated by a statistical model. We solve these problems by developing a suppositional account of degree of belief where probabilities in scientific modeling are decoupled from our actual (unconditional) degrees of belief. This explains the normative pull of chance-credence coordination in Bayesian inference, uncovers the essentially counterfactual nature of reasoning with Bayesian models, and squares well with our intuitive judgment that statistical models provide “objective” probabilities.","PeriodicalId":140328,"journal":{"name":"Bayesian Philosophy of Science","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Models, Idealizations and Objective Chance\",\"authors\":\"J. Sprenger, S. Hartmann\",\"doi\":\"10.1093/oso/9780199672110.003.0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How does Bayesian inference handle the highly idealized nature of many (statistical) models in science? The standard interpretation of probability as degree of belief in the truth of a model does not seem to apply in such cases since all candidate models are most probably wrong. Similarly, it is not clear how chance-credence coordination works for the probabilities generated by a statistical model. We solve these problems by developing a suppositional account of degree of belief where probabilities in scientific modeling are decoupled from our actual (unconditional) degrees of belief. This explains the normative pull of chance-credence coordination in Bayesian inference, uncovers the essentially counterfactual nature of reasoning with Bayesian models, and squares well with our intuitive judgment that statistical models provide “objective” probabilities.\",\"PeriodicalId\":140328,\"journal\":{\"name\":\"Bayesian Philosophy of Science\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Philosophy of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780199672110.003.0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Philosophy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780199672110.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯推理如何处理科学中许多(统计)模型的高度理想化本质?对概率的标准解释,即对模型真实性的相信程度,似乎不适用于这种情况,因为所有候选模型都很可能是错误的。同样,对于统计模型生成的概率,机会-可信度协调如何起作用也不清楚。我们通过发展一种假设的可信度来解决这些问题,其中科学建模中的概率与我们实际的(无条件的)可信度解耦。这解释了贝叶斯推理中机会-可信度协调的规范性拉力,揭示了贝叶斯模型推理的本质反事实性质,并与我们的直觉判断很好地吻合,即统计模型提供了“客观”概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Models, Idealizations and Objective Chance
How does Bayesian inference handle the highly idealized nature of many (statistical) models in science? The standard interpretation of probability as degree of belief in the truth of a model does not seem to apply in such cases since all candidate models are most probably wrong. Similarly, it is not clear how chance-credence coordination works for the probabilities generated by a statistical model. We solve these problems by developing a suppositional account of degree of belief where probabilities in scientific modeling are decoupled from our actual (unconditional) degrees of belief. This explains the normative pull of chance-credence coordination in Bayesian inference, uncovers the essentially counterfactual nature of reasoning with Bayesian models, and squares well with our intuitive judgment that statistical models provide “objective” probabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信