用于穿墙成像的稀疏MIMO架构

Li Li, P. Boufounos, Dehong Liu, H. Mansour, Z. Sahinoglu
{"title":"用于穿墙成像的稀疏MIMO架构","authors":"Li Li, P. Boufounos, Dehong Liu, H. Mansour, Z. Sahinoglu","doi":"10.1109/SAM.2014.6882455","DOIUrl":null,"url":null,"abstract":"Compressive sensing and sparse array processing has provided new approaches to improve radar imaging systems. This paper, explores the potential of sparse Multiple-Input-Multiple-Output (MIMO) radar arrays to significantly reduce the cost of through-the-wall imaging (TWI). We analyze three well-known sparse array structures-nested arrays, co-prime arrays and random arrays-and examine their performance in the presence of common types of layered walls. The reconstruction is performed by formulating and solving a wall parameter estimation problem in conjunction with a sparse reconstruction problem that takes the wall parameters into account. Our simulation results demonstrate the effectiveness of our approach and validate the performance of the system for the three different MIMO sparse array structures.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Sparse MIMO architectures for through-the-wall imaging\",\"authors\":\"Li Li, P. Boufounos, Dehong Liu, H. Mansour, Z. Sahinoglu\",\"doi\":\"10.1109/SAM.2014.6882455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing and sparse array processing has provided new approaches to improve radar imaging systems. This paper, explores the potential of sparse Multiple-Input-Multiple-Output (MIMO) radar arrays to significantly reduce the cost of through-the-wall imaging (TWI). We analyze three well-known sparse array structures-nested arrays, co-prime arrays and random arrays-and examine their performance in the presence of common types of layered walls. The reconstruction is performed by formulating and solving a wall parameter estimation problem in conjunction with a sparse reconstruction problem that takes the wall parameters into account. Our simulation results demonstrate the effectiveness of our approach and validate the performance of the system for the three different MIMO sparse array structures.\",\"PeriodicalId\":141678,\"journal\":{\"name\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2014.6882455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

压缩感知和稀疏阵列处理为改进雷达成像系统提供了新的途径。本文探讨了稀疏多输入多输出(MIMO)雷达阵列的潜力,以显著降低穿墙成像(TWI)的成本。我们分析了三种众所周知的稀疏阵列结构——嵌套阵列、共素数阵列和随机阵列,并检查了它们在常见类型的分层壁存在下的性能。重建是通过制定和求解壁面参数估计问题以及考虑壁面参数的稀疏重建问题来完成的。仿真结果证明了该方法的有效性,并验证了系统在三种不同的MIMO稀疏阵列结构下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse MIMO architectures for through-the-wall imaging
Compressive sensing and sparse array processing has provided new approaches to improve radar imaging systems. This paper, explores the potential of sparse Multiple-Input-Multiple-Output (MIMO) radar arrays to significantly reduce the cost of through-the-wall imaging (TWI). We analyze three well-known sparse array structures-nested arrays, co-prime arrays and random arrays-and examine their performance in the presence of common types of layered walls. The reconstruction is performed by formulating and solving a wall parameter estimation problem in conjunction with a sparse reconstruction problem that takes the wall parameters into account. Our simulation results demonstrate the effectiveness of our approach and validate the performance of the system for the three different MIMO sparse array structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信