CoWrangler:数据整理脚本的推荐系统

Bhavya Chopra, Anna Fariha, Sumit Gulwani, Austin Z. Henley, Daniel Perelman, Mohammad Raza, Sherry Shi, D. Simmons, Ashish Tiwari
{"title":"CoWrangler:数据整理脚本的推荐系统","authors":"Bhavya Chopra, Anna Fariha, Sumit Gulwani, Austin Z. Henley, Daniel Perelman, Mohammad Raza, Sherry Shi, D. Simmons, Ashish Tiwari","doi":"10.1145/3555041.3589722","DOIUrl":null,"url":null,"abstract":"We present CoWrangler, a real-time data wrangling recommender system, which can recommend the next-best data wrangling operations along with the corresponding human-readable and efficient code snippets to expedite data exploration and wrangling efforts. A key feature of CoWrangler is that it provides explanations for the generated suggestions in the form of data insights, allowing the user to place confidence in the system. Under the hood, CoWrangler relies on intelligent generation of candidate suggestions using program synthesis techniques and ranking of a set of suggestions based on the notion of data quality improvement. We demonstrate how CoWrangler provides a human-in-the-loop data wrangling experience, and helps users make informed data pre-processing decisions, while saving their time and effort.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CoWrangler: Recommender System for Data-Wrangling Scripts\",\"authors\":\"Bhavya Chopra, Anna Fariha, Sumit Gulwani, Austin Z. Henley, Daniel Perelman, Mohammad Raza, Sherry Shi, D. Simmons, Ashish Tiwari\",\"doi\":\"10.1145/3555041.3589722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present CoWrangler, a real-time data wrangling recommender system, which can recommend the next-best data wrangling operations along with the corresponding human-readable and efficient code snippets to expedite data exploration and wrangling efforts. A key feature of CoWrangler is that it provides explanations for the generated suggestions in the form of data insights, allowing the user to place confidence in the system. Under the hood, CoWrangler relies on intelligent generation of candidate suggestions using program synthesis techniques and ranking of a set of suggestions based on the notion of data quality improvement. We demonstrate how CoWrangler provides a human-in-the-loop data wrangling experience, and helps users make informed data pre-processing decisions, while saving their time and effort.\",\"PeriodicalId\":161812,\"journal\":{\"name\":\"Companion of the 2023 International Conference on Management of Data\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2023 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555041.3589722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了CoWrangler,一个实时数据整理推荐系统,它可以推荐次优的数据整理操作以及相应的人类可读和高效的代码片段,以加快数据探索和整理工作。CoWrangler的一个关键特性是,它以数据洞察的形式为生成的建议提供解释,允许用户对系统抱有信心。在底层,CoWrangler依赖于使用程序合成技术智能生成候选建议,并基于数据质量改进的概念对一组建议进行排名。我们将演示CoWrangler如何提供人在循环中的数据整理体验,并帮助用户做出明智的数据预处理决策,同时节省他们的时间和精力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoWrangler: Recommender System for Data-Wrangling Scripts
We present CoWrangler, a real-time data wrangling recommender system, which can recommend the next-best data wrangling operations along with the corresponding human-readable and efficient code snippets to expedite data exploration and wrangling efforts. A key feature of CoWrangler is that it provides explanations for the generated suggestions in the form of data insights, allowing the user to place confidence in the system. Under the hood, CoWrangler relies on intelligent generation of candidate suggestions using program synthesis techniques and ranking of a set of suggestions based on the notion of data quality improvement. We demonstrate how CoWrangler provides a human-in-the-loop data wrangling experience, and helps users make informed data pre-processing decisions, while saving their time and effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信