个人书目数据可视化设计研究

Tsai-Ling Fung, Jia-Kai Chou, K. Ma
{"title":"个人书目数据可视化设计研究","authors":"Tsai-Ling Fung, Jia-Kai Chou, K. Ma","doi":"10.1109/PACIFICVIS.2016.7465279","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study on personal visualizations of bibliographic data. We consider three designs for egocentric visualization: node-link diagrams, adjacency matrices, and botanical trees to depict one's academic career in terms of his/her publication records. Case studies are conducted to compare the effectiveness of resulting visualizations for conveying particular aspect of a researcher's bibliographic records. Based on our study, we find that node-link diagrams are better at revealing the overall distribution of certain attributes; adjacency matrices can convey more information with less clutter; and botanical trees are visually attractive and provide the best at a glance characterization of the mapped data, but mapping data to tree features must be carefully done to derive expressive visualization.","PeriodicalId":129600,"journal":{"name":"2016 IEEE Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A design study of personal bibliographic data visualization\",\"authors\":\"Tsai-Ling Fung, Jia-Kai Chou, K. Ma\",\"doi\":\"10.1109/PACIFICVIS.2016.7465279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study on personal visualizations of bibliographic data. We consider three designs for egocentric visualization: node-link diagrams, adjacency matrices, and botanical trees to depict one's academic career in terms of his/her publication records. Case studies are conducted to compare the effectiveness of resulting visualizations for conveying particular aspect of a researcher's bibliographic records. Based on our study, we find that node-link diagrams are better at revealing the overall distribution of certain attributes; adjacency matrices can convey more information with less clutter; and botanical trees are visually attractive and provide the best at a glance characterization of the mapped data, but mapping data to tree features must be carefully done to derive expressive visualization.\",\"PeriodicalId\":129600,\"journal\":{\"name\":\"2016 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2016.7465279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2016.7465279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文对书目数据个性化可视化进行了比较研究。我们考虑了三种以自我为中心的可视化设计:节点链接图、邻接矩阵和植物树,以他/她的出版记录来描述一个人的学术生涯。案例研究是为了比较结果可视化的有效性,以传达研究人员的书目记录的特定方面。基于我们的研究,我们发现节点链接图更善于揭示某些属性的整体分布;邻接矩阵能以较少的杂波传递更多的信息;植物树在视觉上很有吸引力,并且提供了映射数据的最佳一目了然的特征,但是必须仔细地将数据映射到树的特征,以获得富有表现力的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A design study of personal bibliographic data visualization
This paper presents a comparative study on personal visualizations of bibliographic data. We consider three designs for egocentric visualization: node-link diagrams, adjacency matrices, and botanical trees to depict one's academic career in terms of his/her publication records. Case studies are conducted to compare the effectiveness of resulting visualizations for conveying particular aspect of a researcher's bibliographic records. Based on our study, we find that node-link diagrams are better at revealing the overall distribution of certain attributes; adjacency matrices can convey more information with less clutter; and botanical trees are visually attractive and provide the best at a glance characterization of the mapped data, but mapping data to tree features must be carefully done to derive expressive visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信