加性白噪声中正弦波数的估计

J. Fuchs
{"title":"加性白噪声中正弦波数的估计","authors":"J. Fuchs","doi":"10.1109/ICASSP.1987.1169582","DOIUrl":null,"url":null,"abstract":"For a random process that can be modeled as a sum of real sinusoids in white noise, we address the problem of the estimation of the number of sinusoids. The test we propose uses the eigen-decomposition of the estimated autocorrelation matrix and is based on matrix perturbation analysis. The estimator is shown to resolve closely spaced sinusoids at quite low signal -to- noise ratios.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Estimating the number of sinusoids in additive white-noise\",\"authors\":\"J. Fuchs\",\"doi\":\"10.1109/ICASSP.1987.1169582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a random process that can be modeled as a sum of real sinusoids in white noise, we address the problem of the estimation of the number of sinusoids. The test we propose uses the eigen-decomposition of the estimated autocorrelation matrix and is based on matrix perturbation analysis. The estimator is shown to resolve closely spaced sinusoids at quite low signal -to- noise ratios.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

对于一个随机过程,可以建模为在白噪声中实数正弦波的和,我们解决了正弦波数的估计问题。我们提出的测试使用估计的自相关矩阵的特征分解,并基于矩阵摄动分析。该估计器被证明可以在相当低的信噪比下解决紧密间隔的正弦波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the number of sinusoids in additive white-noise
For a random process that can be modeled as a sum of real sinusoids in white noise, we address the problem of the estimation of the number of sinusoids. The test we propose uses the eigen-decomposition of the estimated autocorrelation matrix and is based on matrix perturbation analysis. The estimator is shown to resolve closely spaced sinusoids at quite low signal -to- noise ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信