欠驱动平衡机器人系统的学习建模与控制

Kuo Chen, J. Yi, Tao Liu
{"title":"欠驱动平衡机器人系统的学习建模与控制","authors":"Kuo Chen, J. Yi, Tao Liu","doi":"10.1109/COASE.2017.8256254","DOIUrl":null,"url":null,"abstract":"Underactuated balance robots represent a broad class of mechanical systems, ranging from Furuta pendulum, autonomous motorcycles, and robotic bipedal walkers, etc. The control tasks of these systems include trajectory tracking and balancing requirements. We present a data-driven modeling and control framework of the underactuated balance robots. A machine-learning method is used to capture the dynamics and the balance equilibrium manifold that represents balancing task target. We combine the learning-based models with the structural properties of the external/internal convertible form of these underactuated systems. Applications of the proposed learning-based models and control design are applied to the Furuta pendulum by simulation and experiments.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning-based modeling and control of underactuated balance robotic systems\",\"authors\":\"Kuo Chen, J. Yi, Tao Liu\",\"doi\":\"10.1109/COASE.2017.8256254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underactuated balance robots represent a broad class of mechanical systems, ranging from Furuta pendulum, autonomous motorcycles, and robotic bipedal walkers, etc. The control tasks of these systems include trajectory tracking and balancing requirements. We present a data-driven modeling and control framework of the underactuated balance robots. A machine-learning method is used to capture the dynamics and the balance equilibrium manifold that represents balancing task target. We combine the learning-based models with the structural properties of the external/internal convertible form of these underactuated systems. Applications of the proposed learning-based models and control design are applied to the Furuta pendulum by simulation and experiments.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

欠驱动平衡机器人代表了一个广泛的机械系统类别,包括古田摆、自动摩托车和机器人双足步行器等。这些系统的控制任务包括轨迹跟踪和平衡要求。提出了欠驱动平衡机器人的数据驱动建模和控制框架。采用机器学习的方法捕获动态和平衡流形,表示平衡任务目标。我们将基于学习的模型与这些欠驱动系统的外部/内部可转换形式的结构特性结合起来。通过仿真和实验,将所提出的基于学习的模型和控制设计应用于古田摆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-based modeling and control of underactuated balance robotic systems
Underactuated balance robots represent a broad class of mechanical systems, ranging from Furuta pendulum, autonomous motorcycles, and robotic bipedal walkers, etc. The control tasks of these systems include trajectory tracking and balancing requirements. We present a data-driven modeling and control framework of the underactuated balance robots. A machine-learning method is used to capture the dynamics and the balance equilibrium manifold that represents balancing task target. We combine the learning-based models with the structural properties of the external/internal convertible form of these underactuated systems. Applications of the proposed learning-based models and control design are applied to the Furuta pendulum by simulation and experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信