Jordan映射下旋转群像不变子空间的结构

G. V. Tushavin, A. Trifanov, E. Trifanova, I.A. Shipitsyn
{"title":"Jordan映射下旋转群像不变子空间的结构","authors":"G. V. Tushavin, A. Trifanov, E. Trifanova, I.A. Shipitsyn","doi":"10.1109/DD46733.2019.9016524","DOIUrl":null,"url":null,"abstract":"We studied the structure of invariant subspaces of effective Hamiltonian of phase light modulation process [1]. Hamiltonian generators satisfy the commutation relationships of SU(2) rotation group [2], thus we can derive their Bose operator representation by using Jordan mapping technique. However, due to the dimensionality of Fock space and additional symmetries of Bose operators, tasks of obtaining eigenbasis, as well as complete classification of invariant subspaces, become nontrivial. In this work, we obtain the relations between the bases of invariant subspaces and derive a classification of the last ones.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structure of invariant subspaces of the rotation group image under the Jordan mapping\",\"authors\":\"G. V. Tushavin, A. Trifanov, E. Trifanova, I.A. Shipitsyn\",\"doi\":\"10.1109/DD46733.2019.9016524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the structure of invariant subspaces of effective Hamiltonian of phase light modulation process [1]. Hamiltonian generators satisfy the commutation relationships of SU(2) rotation group [2], thus we can derive their Bose operator representation by using Jordan mapping technique. However, due to the dimensionality of Fock space and additional symmetries of Bose operators, tasks of obtaining eigenbasis, as well as complete classification of invariant subspaces, become nontrivial. In this work, we obtain the relations between the bases of invariant subspaces and derive a classification of the last ones.\",\"PeriodicalId\":319575,\"journal\":{\"name\":\"2019 Days on Diffraction (DD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD46733.2019.9016524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了相位光调制过程有效哈密顿量的不变子空间的结构[1]。哈密顿生成子满足SU(2)旋转群的对易关系[2],因此我们可以利用Jordan映射技术推导出它们的玻色算子表示。然而,由于Fock空间的维数和玻色算子的额外对称性,获得特征基以及对不变子空间的完全分类的任务变得非平凡。本文给出了不变子空间基之间的关系,并给出了不变子空间基的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure of invariant subspaces of the rotation group image under the Jordan mapping
We studied the structure of invariant subspaces of effective Hamiltonian of phase light modulation process [1]. Hamiltonian generators satisfy the commutation relationships of SU(2) rotation group [2], thus we can derive their Bose operator representation by using Jordan mapping technique. However, due to the dimensionality of Fock space and additional symmetries of Bose operators, tasks of obtaining eigenbasis, as well as complete classification of invariant subspaces, become nontrivial. In this work, we obtain the relations between the bases of invariant subspaces and derive a classification of the last ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信