不同阶导数函数在电力系统数字频率估计中Clarke分量预测的性能分析

Fábio K. Schons, E. M. dos Santos, Chrystian D. L. da Silva, Eduardo D. Kilian, F. de Oliveira, Luana B. Severo
{"title":"不同阶导数函数在电力系统数字频率估计中Clarke分量预测的性能分析","authors":"Fábio K. Schons, E. M. dos Santos, Chrystian D. L. da Silva, Eduardo D. Kilian, F. de Oliveira, Luana B. Severo","doi":"10.1109/icgea54406.2022.9792100","DOIUrl":null,"url":null,"abstract":"The electrical frequency is a parameter of great importance for the full operation of Electric Power Systems (EPS), influencing the operation of equipment and the quality of the energy supplied. This work presents an innovative method for digital frequency estimation in EPS. The estimation technique is based on the analysis of the voltage waveforms of the network, which are decomposed into their α and β components using the Clarke Transform. Future values of the α and β components are predicted through their respective different orders derivative functions. From these values, the network frequency is then estimated as a function of the angle resulting from the product between the actual Clarke complex signal and the one given by the α and β components prediction. The proposed method was tested for frequency signals with ramp, exponential and damped sinusoidal variations. The methodology was evaluated in terms of convergence time and minimum and maximum errors before and after convergence, showing that the proposed technique has great precision and robustness against the simulated situations.","PeriodicalId":151236,"journal":{"name":"2022 6th International Conference on Green Energy and Applications (ICGEA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Analysis of Clarke Components Prediction via Derivative-Functions of Different Orders Applied in Digital Frequency Estimation in Electric Power Systems\",\"authors\":\"Fábio K. Schons, E. M. dos Santos, Chrystian D. L. da Silva, Eduardo D. Kilian, F. de Oliveira, Luana B. Severo\",\"doi\":\"10.1109/icgea54406.2022.9792100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrical frequency is a parameter of great importance for the full operation of Electric Power Systems (EPS), influencing the operation of equipment and the quality of the energy supplied. This work presents an innovative method for digital frequency estimation in EPS. The estimation technique is based on the analysis of the voltage waveforms of the network, which are decomposed into their α and β components using the Clarke Transform. Future values of the α and β components are predicted through their respective different orders derivative functions. From these values, the network frequency is then estimated as a function of the angle resulting from the product between the actual Clarke complex signal and the one given by the α and β components prediction. The proposed method was tested for frequency signals with ramp, exponential and damped sinusoidal variations. The methodology was evaluated in terms of convergence time and minimum and maximum errors before and after convergence, showing that the proposed technique has great precision and robustness against the simulated situations.\",\"PeriodicalId\":151236,\"journal\":{\"name\":\"2022 6th International Conference on Green Energy and Applications (ICGEA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Green Energy and Applications (ICGEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icgea54406.2022.9792100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Green Energy and Applications (ICGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icgea54406.2022.9792100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电频率是电力系统正常运行的一个重要参数,影响着设备的正常运行和供能质量。本文提出了一种新颖的EPS数字频率估计方法。该估计技术基于对网络电压波形的分析,利用Clarke变换将其分解为α和β分量。通过α和β分量的不同阶导数函数预测其未来值。从这些值中,网络频率被估计为实际Clarke复信号与由α和β分量预测给出的信号之间的乘积所产生的角度的函数。对斜坡、指数和阻尼正弦变化的频率信号进行了测试。从收敛时间和收敛前后的最小误差和最大误差两方面对该方法进行了评价,结果表明该方法具有较高的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Clarke Components Prediction via Derivative-Functions of Different Orders Applied in Digital Frequency Estimation in Electric Power Systems
The electrical frequency is a parameter of great importance for the full operation of Electric Power Systems (EPS), influencing the operation of equipment and the quality of the energy supplied. This work presents an innovative method for digital frequency estimation in EPS. The estimation technique is based on the analysis of the voltage waveforms of the network, which are decomposed into their α and β components using the Clarke Transform. Future values of the α and β components are predicted through their respective different orders derivative functions. From these values, the network frequency is then estimated as a function of the angle resulting from the product between the actual Clarke complex signal and the one given by the α and β components prediction. The proposed method was tested for frequency signals with ramp, exponential and damped sinusoidal variations. The methodology was evaluated in terms of convergence time and minimum and maximum errors before and after convergence, showing that the proposed technique has great precision and robustness against the simulated situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信