基于支持向量机的原子钟钟差预测

Wu Wenjuan, Z. Jiangmiao
{"title":"基于支持向量机的原子钟钟差预测","authors":"Wu Wenjuan, Z. Jiangmiao","doi":"10.1109/IIH-MSP.2013.46","DOIUrl":null,"url":null,"abstract":"The atomic clock device is complicated, and its operation is influenced by a lot of factors, so the date has certain randomness. Predicting atomic clock data by appropriate algorithm is the important step of atomic clock data processing. This article chooses SVM algorithm to predict clock differences, and processed the real atomic clock data, compared relative error with the prediction results and the results of linear regression algorithm, the prediction algorithm based on SVM is effective.","PeriodicalId":105427,"journal":{"name":"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clock Difference Prediction of Atomic Clock Based on Support Vector Machine\",\"authors\":\"Wu Wenjuan, Z. Jiangmiao\",\"doi\":\"10.1109/IIH-MSP.2013.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atomic clock device is complicated, and its operation is influenced by a lot of factors, so the date has certain randomness. Predicting atomic clock data by appropriate algorithm is the important step of atomic clock data processing. This article chooses SVM algorithm to predict clock differences, and processed the real atomic clock data, compared relative error with the prediction results and the results of linear regression algorithm, the prediction algorithm based on SVM is effective.\",\"PeriodicalId\":105427,\"journal\":{\"name\":\"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIH-MSP.2013.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2013.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于原子钟装置复杂,其运行受很多因素的影响,因此其日期具有一定的随机性。用合适的算法预测原子钟数据是原子钟数据处理的重要步骤。本文选择SVM算法进行时钟差预测,并对真实原子钟数据进行处理,将预测结果的相对误差与线性回归算法的预测结果进行比较,表明基于SVM的预测算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clock Difference Prediction of Atomic Clock Based on Support Vector Machine
The atomic clock device is complicated, and its operation is influenced by a lot of factors, so the date has certain randomness. Predicting atomic clock data by appropriate algorithm is the important step of atomic clock data processing. This article chooses SVM algorithm to predict clock differences, and processed the real atomic clock data, compared relative error with the prediction results and the results of linear regression algorithm, the prediction algorithm based on SVM is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信