具有不对称输入约束和不确定干扰的非线性系统的事件触发自适应动态规划

Y. Liu, Guoqing Qiu, Wenyao Gou, Qie Liu
{"title":"具有不对称输入约束和不确定干扰的非线性系统的事件触发自适应动态规划","authors":"Y. Liu, Guoqing Qiu, Wenyao Gou, Qie Liu","doi":"10.1002/oca.2977","DOIUrl":null,"url":null,"abstract":"In this article, an uncertain disturbance rejection control problem for the affine system in the presence of asymmetric input constraints is addressed using an event‐triggered control method. The disturbance rejection control is converted to an H∞$$ {H}_{\\infty } $$ optimal control problem, and a zero‐sum game‐based method is proposed to solve this H∞$$ {H}_{\\infty } $$ optimal control problem. To deal with the input constraints, a new cost function is proposed. The event‐triggered controller is updated only when the triggering condition is satisfied, which can reduce the computational complexity.In order to obtain a controller that minimizes the performance index function in the worst‐case disturbance, we use a critic‐only network to solve the Hamilton–Jacobi–Isaacs (HJI) equation, and the critic network weight is tuned through a gradient descent method with the historical state data. The stability of the closed‐loop system and the uniform ultimate boundedness of the critic network parameters are proved by the Lyapunov method. Two numerical examples are provided to verify the effectiveness of the proposed methods.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Event‐triggered adaptive dynamic programming of nonlinear system with asymmetric input constraints and uncertain disturbances\",\"authors\":\"Y. Liu, Guoqing Qiu, Wenyao Gou, Qie Liu\",\"doi\":\"10.1002/oca.2977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an uncertain disturbance rejection control problem for the affine system in the presence of asymmetric input constraints is addressed using an event‐triggered control method. The disturbance rejection control is converted to an H∞$$ {H}_{\\\\infty } $$ optimal control problem, and a zero‐sum game‐based method is proposed to solve this H∞$$ {H}_{\\\\infty } $$ optimal control problem. To deal with the input constraints, a new cost function is proposed. The event‐triggered controller is updated only when the triggering condition is satisfied, which can reduce the computational complexity.In order to obtain a controller that minimizes the performance index function in the worst‐case disturbance, we use a critic‐only network to solve the Hamilton–Jacobi–Isaacs (HJI) equation, and the critic network weight is tuned through a gradient descent method with the historical state data. The stability of the closed‐loop system and the uniform ultimate boundedness of the critic network parameters are proved by the Lyapunov method. Two numerical examples are provided to verify the effectiveness of the proposed methods.\",\"PeriodicalId\":105945,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.2977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.2977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用事件触发控制方法解决了具有非对称输入约束的仿射系统的不确定抗扰控制问题。将扰动抑制控制转化为一个H∞$$ {H}_{\infty } $$最优控制问题,提出了一种基于零和博弈的方法来解决这个H∞$$ {H}_{\infty } $$最优控制问题。为了处理输入约束,提出了一种新的成本函数。事件触发控制器仅在满足触发条件时更新,从而降低了计算复杂度。为了获得在最坏情况干扰下性能指标函数最小的控制器,我们使用仅评论家网络来求解Hamilton-Jacobi-Isaacs (HJI)方程,并通过使用历史状态数据的梯度下降法来调整评论家网络的权重。用李亚普诺夫方法证明了闭环系统的稳定性和临界网络参数的一致极限有界性。通过两个算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event‐triggered adaptive dynamic programming of nonlinear system with asymmetric input constraints and uncertain disturbances
In this article, an uncertain disturbance rejection control problem for the affine system in the presence of asymmetric input constraints is addressed using an event‐triggered control method. The disturbance rejection control is converted to an H∞$$ {H}_{\infty } $$ optimal control problem, and a zero‐sum game‐based method is proposed to solve this H∞$$ {H}_{\infty } $$ optimal control problem. To deal with the input constraints, a new cost function is proposed. The event‐triggered controller is updated only when the triggering condition is satisfied, which can reduce the computational complexity.In order to obtain a controller that minimizes the performance index function in the worst‐case disturbance, we use a critic‐only network to solve the Hamilton–Jacobi–Isaacs (HJI) equation, and the critic network weight is tuned through a gradient descent method with the historical state data. The stability of the closed‐loop system and the uniform ultimate boundedness of the critic network parameters are proved by the Lyapunov method. Two numerical examples are provided to verify the effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信