{"title":"用于终止分析的数据驱动环界学习","authors":"Rongchen Xu, Jianhui Chen, Fei He","doi":"10.1145/3510003.3510220","DOIUrl":null,"url":null,"abstract":"Termination is a fundamental liveness property for program verification. A loop bound is an upper bound of the number of loop iterations for a given program. The existence of a loop bound evidences the termination of the program. This paper employs a reinforced black-box learning approach for termination proving, consisting of a loop bound learner and a validation checker. We present efficient data-driven algorithms for inferring various kinds of loop bounds, including simple loop bounds, conjunctive loop bounds, and lexicographic loop bounds. We also devise an efficient validation checker by integrating a quick bound checking algorithm and a two-way data sharing mechanism. We implemented a prototype tool called ddlTerm. Experiments on publicly accessible benchmarks show that ddlTerm outperforms state-of-the-art termination analysis tools by solving 13-48% more benchmarks and saving 40-77% solving time.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-Driven Loop Bound Learning for Termination Analysis\",\"authors\":\"Rongchen Xu, Jianhui Chen, Fei He\",\"doi\":\"10.1145/3510003.3510220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Termination is a fundamental liveness property for program verification. A loop bound is an upper bound of the number of loop iterations for a given program. The existence of a loop bound evidences the termination of the program. This paper employs a reinforced black-box learning approach for termination proving, consisting of a loop bound learner and a validation checker. We present efficient data-driven algorithms for inferring various kinds of loop bounds, including simple loop bounds, conjunctive loop bounds, and lexicographic loop bounds. We also devise an efficient validation checker by integrating a quick bound checking algorithm and a two-way data sharing mechanism. We implemented a prototype tool called ddlTerm. Experiments on publicly accessible benchmarks show that ddlTerm outperforms state-of-the-art termination analysis tools by solving 13-48% more benchmarks and saving 40-77% solving time.\",\"PeriodicalId\":202896,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510003.3510220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-Driven Loop Bound Learning for Termination Analysis
Termination is a fundamental liveness property for program verification. A loop bound is an upper bound of the number of loop iterations for a given program. The existence of a loop bound evidences the termination of the program. This paper employs a reinforced black-box learning approach for termination proving, consisting of a loop bound learner and a validation checker. We present efficient data-driven algorithms for inferring various kinds of loop bounds, including simple loop bounds, conjunctive loop bounds, and lexicographic loop bounds. We also devise an efficient validation checker by integrating a quick bound checking algorithm and a two-way data sharing mechanism. We implemented a prototype tool called ddlTerm. Experiments on publicly accessible benchmarks show that ddlTerm outperforms state-of-the-art termination analysis tools by solving 13-48% more benchmarks and saving 40-77% solving time.