一种基于核判别分析的基于llr的说话人验证替代假设的新表征

Yi-Hsiang Chao, H. Wang, Ruei-Chuan Chang
{"title":"一种基于核判别分析的基于llr的说话人验证替代假设的新表征","authors":"Yi-Hsiang Chao, H. Wang, Ruei-Chuan Chang","doi":"10.30019/IJCLCLP.200709.0003","DOIUrl":null,"url":null,"abstract":"In a log-likelihood ratio (LLR)-based speaker verification system, the alternative hypothesis is usually difficult to characterize a priori, since the model should cover the space of all possible impostors. In this paper, we propose a new LLR measure in an attempt to characterize the alternative hypothesis in a more effective and robust way than conventional methods. This LLR measure can be further formulated as a non-linear discriminant classifier and solved by kernel-based techniques, such as the Kernel Fisher Discriminant (KFD) and Support Vector Machine (SVM). The results of experiments on two speaker verification tasks show that the proposed methods outperform classical LLR-based approaches.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Characterization of the Alternative Hypothesis Using Kernel Discriminant Analysis for LLR-Based Speaker Verification\",\"authors\":\"Yi-Hsiang Chao, H. Wang, Ruei-Chuan Chang\",\"doi\":\"10.30019/IJCLCLP.200709.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a log-likelihood ratio (LLR)-based speaker verification system, the alternative hypothesis is usually difficult to characterize a priori, since the model should cover the space of all possible impostors. In this paper, we propose a new LLR measure in an attempt to characterize the alternative hypothesis in a more effective and robust way than conventional methods. This LLR measure can be further formulated as a non-linear discriminant classifier and solved by kernel-based techniques, such as the Kernel Fisher Discriminant (KFD) and Support Vector Machine (SVM). The results of experiments on two speaker verification tasks show that the proposed methods outperform classical LLR-based approaches.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.200709.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200709.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在基于对数似然比(LLR)的说话人验证系统中,备选假设通常很难先验地表征,因为模型应该覆盖所有可能的冒名顶替者的空间。在本文中,我们提出了一种新的LLR度量,试图以比传统方法更有效和稳健的方式表征替代假设。这种LLR度量可以进一步表述为非线性判别分类器,并通过基于核的技术,如核Fisher判别器(KFD)和支持向量机(SVM)来求解。在两个说话人验证任务上的实验结果表明,本文提出的方法优于经典的基于llr的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Characterization of the Alternative Hypothesis Using Kernel Discriminant Analysis for LLR-Based Speaker Verification
In a log-likelihood ratio (LLR)-based speaker verification system, the alternative hypothesis is usually difficult to characterize a priori, since the model should cover the space of all possible impostors. In this paper, we propose a new LLR measure in an attempt to characterize the alternative hypothesis in a more effective and robust way than conventional methods. This LLR measure can be further formulated as a non-linear discriminant classifier and solved by kernel-based techniques, such as the Kernel Fisher Discriminant (KFD) and Support Vector Machine (SVM). The results of experiments on two speaker verification tasks show that the proposed methods outperform classical LLR-based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信