Federico Bolelli, F. Pollastri, Roberto Paredes Palacios, C. Grana
{"title":"用生成对抗网络改进皮肤病变分割","authors":"Federico Bolelli, F. Pollastri, Roberto Paredes Palacios, C. Grana","doi":"10.1109/CBMS.2018.00086","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel strategy that employs Generative Adversarial Networks (GANs) to augment data in the image segmentation field, and a Convolutional-Deconvolutional Neural Network (CDNN) to automatically generate lesion segmentation mask from dermoscopic images. Training the CDNN with our GAN generated data effectively improves the state-of-the-art.","PeriodicalId":229453,"journal":{"name":"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Improving Skin Lesion Segmentation with Generative Adversarial Networks\",\"authors\":\"Federico Bolelli, F. Pollastri, Roberto Paredes Palacios, C. Grana\",\"doi\":\"10.1109/CBMS.2018.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel strategy that employs Generative Adversarial Networks (GANs) to augment data in the image segmentation field, and a Convolutional-Deconvolutional Neural Network (CDNN) to automatically generate lesion segmentation mask from dermoscopic images. Training the CDNN with our GAN generated data effectively improves the state-of-the-art.\",\"PeriodicalId\":229453,\"journal\":{\"name\":\"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2018.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2018.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Skin Lesion Segmentation with Generative Adversarial Networks
This paper proposes a novel strategy that employs Generative Adversarial Networks (GANs) to augment data in the image segmentation field, and a Convolutional-Deconvolutional Neural Network (CDNN) to automatically generate lesion segmentation mask from dermoscopic images. Training the CDNN with our GAN generated data effectively improves the state-of-the-art.