图像排名与密度树为谷歌地图

Jared Johnson, Sema Berkiten
{"title":"图像排名与密度树为谷歌地图","authors":"Jared Johnson, Sema Berkiten","doi":"10.1145/3388767.3407353","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised learning technique for image ranking of photos contributed by Google Maps users. A density tree is built for each point-of-interest (POI), such as The National Mall or the Louvre. This tree is used to construct clusters, which are then ranked based on size and quality. We choose a representative image for each cluster, resulting in a ranked set of high-quality, diverse, and relevant images for each POI. We validated our algorithm in a side-by-side preference study.","PeriodicalId":368810,"journal":{"name":"Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Ranking with Density Trees for Google Maps\",\"authors\":\"Jared Johnson, Sema Berkiten\",\"doi\":\"10.1145/3388767.3407353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an unsupervised learning technique for image ranking of photos contributed by Google Maps users. A density tree is built for each point-of-interest (POI), such as The National Mall or the Louvre. This tree is used to construct clusters, which are then ranked based on size and quality. We choose a representative image for each cluster, resulting in a ranked set of high-quality, diverse, and relevant images for each POI. We validated our algorithm in a side-by-side preference study.\",\"PeriodicalId\":368810,\"journal\":{\"name\":\"Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388767.3407353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388767.3407353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种无监督学习技术,用于对谷歌地图用户提供的照片进行图像排序。为每个兴趣点(POI)构建密度树,例如国家广场或卢浮宫。该树用于构建集群,然后根据大小和质量对集群进行排名。我们为每个集群选择一个代表性图像,从而为每个POI生成一组高质量、多样化和相关的图像。我们在并排偏好研究中验证了我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Ranking with Density Trees for Google Maps
We propose an unsupervised learning technique for image ranking of photos contributed by Google Maps users. A density tree is built for each point-of-interest (POI), such as The National Mall or the Louvre. This tree is used to construct clusters, which are then ranked based on size and quality. We choose a representative image for each cluster, resulting in a ranked set of high-quality, diverse, and relevant images for each POI. We validated our algorithm in a side-by-side preference study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信