平面外位流问题的等几何边界元

C. Politis, A. Ginnis, P. Kaklis, K. Belibassakis, C. Feurer
{"title":"平面外位流问题的等几何边界元","authors":"C. Politis, A. Ginnis, P. Kaklis, K. Belibassakis, C. Feurer","doi":"10.1145/1629255.1629302","DOIUrl":null,"url":null,"abstract":"In this paper, the isogeometric concept introduced by Hughes, in the context of Finite Element Method, is applied to Boundary Element Method (BEM), for solving an exterior planar Neumann problem. The developed isogeometric-BEM concept is based on NURBS, for representing the exact body geometry and employs the same basis for representing the potential and/or the density of the single layer. In order to examine the accuracy of the scheme, numerical results for the case of a circle and a free-form body are presented and compared against analytical solutions. This enables performing a numerical error analysis, verifying the superior convergence rate of the isogeometric BEM versus low-order BEM. When starting from the initial NURBS representation of the geometry and then using knot insertion for refinement of the NURBS basis, the achieved rate of convergence is O(DoF-4). This rate may be further improved by using a degree-elevated initial NURBS representation of the geometry (kh-refinement).","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"An isogeometric BEM for exterior potential-flow problems in the plane\",\"authors\":\"C. Politis, A. Ginnis, P. Kaklis, K. Belibassakis, C. Feurer\",\"doi\":\"10.1145/1629255.1629302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the isogeometric concept introduced by Hughes, in the context of Finite Element Method, is applied to Boundary Element Method (BEM), for solving an exterior planar Neumann problem. The developed isogeometric-BEM concept is based on NURBS, for representing the exact body geometry and employs the same basis for representing the potential and/or the density of the single layer. In order to examine the accuracy of the scheme, numerical results for the case of a circle and a free-form body are presented and compared against analytical solutions. This enables performing a numerical error analysis, verifying the superior convergence rate of the isogeometric BEM versus low-order BEM. When starting from the initial NURBS representation of the geometry and then using knot insertion for refinement of the NURBS basis, the achieved rate of convergence is O(DoF-4). This rate may be further improved by using a degree-elevated initial NURBS representation of the geometry (kh-refinement).\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629255.1629302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629255.1629302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

本文将Hughes在有限单元法背景下引入的等几何概念应用于边界元法(BEM),用于求解外平面诺依曼问题。开发的等几何边界元概念基于NURBS,用于表示精确的车身几何形状,并采用相同的基础来表示单层的势能和/或密度。为了检验该格式的准确性,给出了圆和自由形体的数值结果,并与解析解进行了比较。这样可以进行数值误差分析,验证等几何边界元与低阶边界元的优越收敛速度。当从几何形状的初始NURBS表示开始,然后使用插入结对NURBS基进行细化时,实现的收敛速度为0 (DoF-4)。通过使用几何形状的初始NURBS表示(kh-细化),可以进一步提高该速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An isogeometric BEM for exterior potential-flow problems in the plane
In this paper, the isogeometric concept introduced by Hughes, in the context of Finite Element Method, is applied to Boundary Element Method (BEM), for solving an exterior planar Neumann problem. The developed isogeometric-BEM concept is based on NURBS, for representing the exact body geometry and employs the same basis for representing the potential and/or the density of the single layer. In order to examine the accuracy of the scheme, numerical results for the case of a circle and a free-form body are presented and compared against analytical solutions. This enables performing a numerical error analysis, verifying the superior convergence rate of the isogeometric BEM versus low-order BEM. When starting from the initial NURBS representation of the geometry and then using knot insertion for refinement of the NURBS basis, the achieved rate of convergence is O(DoF-4). This rate may be further improved by using a degree-elevated initial NURBS representation of the geometry (kh-refinement).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信