{"title":"维护数集的非自适应数据结构下界,来自Sunflowers","authors":"Sivaramakrishnan Natarajan Ramamoorthy, Anup Rao","doi":"10.4230/LIPIcs.CCC.2018.27","DOIUrl":null,"url":null,"abstract":"We prove new cell-probe lower bounds for dynamic data structures that maintain a subset of {1, 2, ..., n}, and compute various statistics of the set. The data structure is said to handle insertions non-adaptively if the locations of memory accessed depend only on the element being inserted, and not on the contents of the memory. For any such data structure that can compute the median of the set, we prove that: [EQUATION] where tins is the number of memory locations accessed during insertions, tmed is the number of memory locations accessed to compute the median, and w is the number of bits stored in each memory location. When the data structure is able to perform deletions non-adaptively and compute the minimum non-adaptively, we prove [EQUATION] where tmin is the number of locations accessed to compute the minimum, and tdel is the number of locations accessed to perform deletions. For the predecessor search problem, where the data structure is required to compute the predecessor of any element in the set, we prove that if computing the predecessors can be done non-adaptively, then [EQUATION] where tpred is the number of locations accessed to compute predecessors. These bounds are nearly matched by Binary Search Trees in some range of parameters. Our results follow from using the Sunflower Lemma of Erdős and Rado [11] together with several kinds of encoding arguments.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Lower Bounds on Non-Adaptive Data Structures Maintaining Sets of Numbers, from Sunflowers\",\"authors\":\"Sivaramakrishnan Natarajan Ramamoorthy, Anup Rao\",\"doi\":\"10.4230/LIPIcs.CCC.2018.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove new cell-probe lower bounds for dynamic data structures that maintain a subset of {1, 2, ..., n}, and compute various statistics of the set. The data structure is said to handle insertions non-adaptively if the locations of memory accessed depend only on the element being inserted, and not on the contents of the memory. For any such data structure that can compute the median of the set, we prove that: [EQUATION] where tins is the number of memory locations accessed during insertions, tmed is the number of memory locations accessed to compute the median, and w is the number of bits stored in each memory location. When the data structure is able to perform deletions non-adaptively and compute the minimum non-adaptively, we prove [EQUATION] where tmin is the number of locations accessed to compute the minimum, and tdel is the number of locations accessed to perform deletions. For the predecessor search problem, where the data structure is required to compute the predecessor of any element in the set, we prove that if computing the predecessors can be done non-adaptively, then [EQUATION] where tpred is the number of locations accessed to compute predecessors. These bounds are nearly matched by Binary Search Trees in some range of parameters. Our results follow from using the Sunflower Lemma of Erdős and Rado [11] together with several kinds of encoding arguments.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2018.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2018.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lower Bounds on Non-Adaptive Data Structures Maintaining Sets of Numbers, from Sunflowers
We prove new cell-probe lower bounds for dynamic data structures that maintain a subset of {1, 2, ..., n}, and compute various statistics of the set. The data structure is said to handle insertions non-adaptively if the locations of memory accessed depend only on the element being inserted, and not on the contents of the memory. For any such data structure that can compute the median of the set, we prove that: [EQUATION] where tins is the number of memory locations accessed during insertions, tmed is the number of memory locations accessed to compute the median, and w is the number of bits stored in each memory location. When the data structure is able to perform deletions non-adaptively and compute the minimum non-adaptively, we prove [EQUATION] where tmin is the number of locations accessed to compute the minimum, and tdel is the number of locations accessed to perform deletions. For the predecessor search problem, where the data structure is required to compute the predecessor of any element in the set, we prove that if computing the predecessors can be done non-adaptively, then [EQUATION] where tpred is the number of locations accessed to compute predecessors. These bounds are nearly matched by Binary Search Trees in some range of parameters. Our results follow from using the Sunflower Lemma of Erdős and Rado [11] together with several kinds of encoding arguments.