基于数据驱动人工智能的个性化无线网络用户行为综合数据集设计

R. Alkurd, I. Abualhaol, H. Yanikomeroglu
{"title":"基于数据驱动人工智能的个性化无线网络用户行为综合数据集设计","authors":"R. Alkurd, I. Abualhaol, H. Yanikomeroglu","doi":"10.1109/ICCW.2019.8756804","DOIUrl":null,"url":null,"abstract":"It is envisioned that wireless networks of the future will support personalized, fine-grained services and decisions by predicting user satisfaction in real-time using machine learning and big data analytics. Data-driven personalization will empower wireless networks to further optimize resources while maintaining user expectations of networks. In order to design, test, and validate research ideas related to wireless network personalization, acquiring data is essential. However, datasets that comprise user behavior and corresponding user satisfaction information are generally not published due to privacy and confidentiality concerns. To account for this, in this paper, we propose a synthetic dataset design methodology to generate labeled user behavior data with ground truth satisfaction values which mimic the real characteristics of real datasets. Finally, we conduct sample user satisfaction prediction experiments using several machine learning algorithms.","PeriodicalId":426086,"journal":{"name":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Synthetic User Behavior Dataset Design for Data-Driven AI-Based Personalized Wireless Networks\",\"authors\":\"R. Alkurd, I. Abualhaol, H. Yanikomeroglu\",\"doi\":\"10.1109/ICCW.2019.8756804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is envisioned that wireless networks of the future will support personalized, fine-grained services and decisions by predicting user satisfaction in real-time using machine learning and big data analytics. Data-driven personalization will empower wireless networks to further optimize resources while maintaining user expectations of networks. In order to design, test, and validate research ideas related to wireless network personalization, acquiring data is essential. However, datasets that comprise user behavior and corresponding user satisfaction information are generally not published due to privacy and confidentiality concerns. To account for this, in this paper, we propose a synthetic dataset design methodology to generate labeled user behavior data with ground truth satisfaction values which mimic the real characteristics of real datasets. Finally, we conduct sample user satisfaction prediction experiments using several machine learning algorithms.\",\"PeriodicalId\":426086,\"journal\":{\"name\":\"2019 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2019.8756804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2019.8756804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

据设想,未来的无线网络将通过使用机器学习和大数据分析实时预测用户满意度,从而支持个性化、细粒度的服务和决策。数据驱动的个性化将使无线网络能够进一步优化资源,同时保持用户对网络的期望。为了设计、测试和验证与无线网络个性化相关的研究思路,获取数据是必不可少的。然而,包含用户行为和相应用户满意度信息的数据集由于隐私和保密问题通常不会发布。为了解释这一点,在本文中,我们提出了一种综合数据集设计方法,以生成具有模拟真实数据集的真实特征的真实满意值的标记用户行为数据。最后,我们使用几种机器学习算法进行了样本用户满意度预测实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Synthetic User Behavior Dataset Design for Data-Driven AI-Based Personalized Wireless Networks
It is envisioned that wireless networks of the future will support personalized, fine-grained services and decisions by predicting user satisfaction in real-time using machine learning and big data analytics. Data-driven personalization will empower wireless networks to further optimize resources while maintaining user expectations of networks. In order to design, test, and validate research ideas related to wireless network personalization, acquiring data is essential. However, datasets that comprise user behavior and corresponding user satisfaction information are generally not published due to privacy and confidentiality concerns. To account for this, in this paper, we propose a synthetic dataset design methodology to generate labeled user behavior data with ground truth satisfaction values which mimic the real characteristics of real datasets. Finally, we conduct sample user satisfaction prediction experiments using several machine learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信