{"title":"余弦和s型高阶神经网络的数据模拟","authors":"","doi":"10.4018/978-1-7998-3563-9.ch008","DOIUrl":null,"url":null,"abstract":"A new open box and nonlinear model of cosine and sigmoid higher order neural network (CS-HONN) is presented in this chapter. A new learning algorithm for CS-HONN is also developed in this chapter. In addition, a time series data simulation and analysis system, CS-HONN simulator, is built based on the CS-HONN models. Test results show that the average error of CS-HONN models are from 2.3436% to 4.6857%, and the average error of polynomial higher order neural network (PHONN), trigonometric higher order neural network (THONN), and sigmoid polynomial higher order neural network (SPHONN) models range from 2.8128% to 4.9077%. This suggests that CS-HONN models are 0.1174% to 0.4917% better than PHONN, THONN, and SPHONN models.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Simulations Using Cosine and Sigmoid Higher Order Neural Networks\",\"authors\":\"\",\"doi\":\"10.4018/978-1-7998-3563-9.ch008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new open box and nonlinear model of cosine and sigmoid higher order neural network (CS-HONN) is presented in this chapter. A new learning algorithm for CS-HONN is also developed in this chapter. In addition, a time series data simulation and analysis system, CS-HONN simulator, is built based on the CS-HONN models. Test results show that the average error of CS-HONN models are from 2.3436% to 4.6857%, and the average error of polynomial higher order neural network (PHONN), trigonometric higher order neural network (THONN), and sigmoid polynomial higher order neural network (SPHONN) models range from 2.8128% to 4.9077%. This suggests that CS-HONN models are 0.1174% to 0.4917% better than PHONN, THONN, and SPHONN models.\",\"PeriodicalId\":236860,\"journal\":{\"name\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-3563-9.ch008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-3563-9.ch008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Simulations Using Cosine and Sigmoid Higher Order Neural Networks
A new open box and nonlinear model of cosine and sigmoid higher order neural network (CS-HONN) is presented in this chapter. A new learning algorithm for CS-HONN is also developed in this chapter. In addition, a time series data simulation and analysis system, CS-HONN simulator, is built based on the CS-HONN models. Test results show that the average error of CS-HONN models are from 2.3436% to 4.6857%, and the average error of polynomial higher order neural network (PHONN), trigonometric higher order neural network (THONN), and sigmoid polynomial higher order neural network (SPHONN) models range from 2.8128% to 4.9077%. This suggests that CS-HONN models are 0.1174% to 0.4917% better than PHONN, THONN, and SPHONN models.