一种基于机器视觉的稳健车道检测方法

Bing Yu, Weigong Zhang
{"title":"一种基于机器视觉的稳健车道检测方法","authors":"Bing Yu, Weigong Zhang","doi":"10.1109/CASE.2009.104","DOIUrl":null,"url":null,"abstract":"The lane detection is a key component of the intelligent transportation systems (ITS). We present a robust approach of lane detection based on machine vision. First, we present the lane model and region of interest (ROI) of the road image. Then, we propose the edge detection approach of the road image based on gray value grade. After that, we illustrate how to remove the interference points in the previous processed image; meanwhile, we describe how to gather the valid points. At last, we employ the coarse Hough transform to estimate the parameter values of the lanes. We present how to use Kalman filter to refine the estimation results. The field tests are carried on a local high-way and the experimental results show that the suggested approach is very reliable.","PeriodicalId":294566,"journal":{"name":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Robust Approach of Lane Detection Based on Machine Vision\",\"authors\":\"Bing Yu, Weigong Zhang\",\"doi\":\"10.1109/CASE.2009.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lane detection is a key component of the intelligent transportation systems (ITS). We present a robust approach of lane detection based on machine vision. First, we present the lane model and region of interest (ROI) of the road image. Then, we propose the edge detection approach of the road image based on gray value grade. After that, we illustrate how to remove the interference points in the previous processed image; meanwhile, we describe how to gather the valid points. At last, we employ the coarse Hough transform to estimate the parameter values of the lanes. We present how to use Kalman filter to refine the estimation results. The field tests are carried on a local high-way and the experimental results show that the suggested approach is very reliable.\",\"PeriodicalId\":294566,\"journal\":{\"name\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2009.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2009.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

车道检测是智能交通系统的关键组成部分。提出了一种基于机器视觉的稳健车道检测方法。首先,提出道路图像的车道模型和感兴趣区域(ROI)。然后,提出了基于灰度值等级的道路图像边缘检测方法。然后,我们演示了如何去除之前处理过的图像中的干扰点;同时,我们描述了如何收集有效点。最后,采用粗霍夫变换对通道的参数值进行估计。我们介绍了如何使用卡尔曼滤波来改进估计结果。在当地某高速公路上进行了现场试验,试验结果表明该方法是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Approach of Lane Detection Based on Machine Vision
The lane detection is a key component of the intelligent transportation systems (ITS). We present a robust approach of lane detection based on machine vision. First, we present the lane model and region of interest (ROI) of the road image. Then, we propose the edge detection approach of the road image based on gray value grade. After that, we illustrate how to remove the interference points in the previous processed image; meanwhile, we describe how to gather the valid points. At last, we employ the coarse Hough transform to estimate the parameter values of the lanes. We present how to use Kalman filter to refine the estimation results. The field tests are carried on a local high-way and the experimental results show that the suggested approach is very reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信