六维庞加莱群的螺旋度和无限自旋表示

M. Podoinitsyn
{"title":"六维庞加莱群的螺旋度和无限自旋表示","authors":"M. Podoinitsyn","doi":"10.22323/1.394.0014","DOIUrl":null,"url":null,"abstract":"The massless irreducible representations of the Poincaré group in the six-dimensional Minkowski space are investigated. We found convenient forms of the Casimir operators and analyzed their spectra. According to this analysis, we conclude that the helicity representation is defined by two (half-)integer numbers, while the infinite spin representation is determined by the real parameter µ 2 and one (half-)integer number.","PeriodicalId":127771,"journal":{"name":"Proceedings of RDP online workshop \"Recent Advances in Mathematical Physics\" — PoS(Regio2020)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helicity and infinite spin representations of the Poincare group in 6D\",\"authors\":\"M. Podoinitsyn\",\"doi\":\"10.22323/1.394.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massless irreducible representations of the Poincaré group in the six-dimensional Minkowski space are investigated. We found convenient forms of the Casimir operators and analyzed their spectra. According to this analysis, we conclude that the helicity representation is defined by two (half-)integer numbers, while the infinite spin representation is determined by the real parameter µ 2 and one (half-)integer number.\",\"PeriodicalId\":127771,\"journal\":{\"name\":\"Proceedings of RDP online workshop \\\"Recent Advances in Mathematical Physics\\\" — PoS(Regio2020)\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of RDP online workshop \\\"Recent Advances in Mathematical Physics\\\" — PoS(Regio2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.394.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of RDP online workshop \"Recent Advances in Mathematical Physics\" — PoS(Regio2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.394.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了六维闵可夫斯基空间中庞加莱格群的无质量不可约表示。我们找到了卡西米尔算子的方便形式,并分析了它们的谱。根据这一分析,我们得出螺旋度表示由两个(半-)整数定义,而无限自旋表示由实参数µ2和一个(半-)整数决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Helicity and infinite spin representations of the Poincare group in 6D
The massless irreducible representations of the Poincaré group in the six-dimensional Minkowski space are investigated. We found convenient forms of the Casimir operators and analyzed their spectra. According to this analysis, we conclude that the helicity representation is defined by two (half-)integer numbers, while the infinite spin representation is determined by the real parameter µ 2 and one (half-)integer number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信