基于径向基函数的分层三维曲面重建

P. Dalmasso, R. Nerino
{"title":"基于径向基函数的分层三维曲面重建","authors":"P. Dalmasso, R. Nerino","doi":"10.1109/TDPVT.2004.1335290","DOIUrl":null,"url":null,"abstract":"Volumetric methods based on implicit surfaces are commonly used in surface reconstruction from uniformly distributed sparse 3D data. The case of nonuniform distributed data has recently deserved more attention, because it occurs frequently in practice. This work describes a volumetric approach to surface reconstruction from nonuniform data which is suitable for the reconstruction of surfaces from images, in particular from multiple views. Differently from volumetric methods which use both 3D surface points and surface normals, the approach does not use the surface normals because they are often unreliable when estimated from image data. The method is based on a hierarchical partitioning of the volume data set. The working volume is split and classified at different scales of spatial resolution into surface, internal and external voxels and this hierarchy is described by an octree structure in a multiscale framework. The octree structure is used to build a multiresolution description of the surface by means of compact support radial basis functions (RBF). A hierarchy of surface approximations at different levels of details is built by representing the voxels at the same octree level as RBF of similar spatial support. At each scale, information related to the reconstruction error drives the reconstruction process at the following finer scale. Preliminary results on synthetic data and future perspectives are presented.","PeriodicalId":191172,"journal":{"name":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hierarchical 3D surface reconstruction based on radial basis functions\",\"authors\":\"P. Dalmasso, R. Nerino\",\"doi\":\"10.1109/TDPVT.2004.1335290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volumetric methods based on implicit surfaces are commonly used in surface reconstruction from uniformly distributed sparse 3D data. The case of nonuniform distributed data has recently deserved more attention, because it occurs frequently in practice. This work describes a volumetric approach to surface reconstruction from nonuniform data which is suitable for the reconstruction of surfaces from images, in particular from multiple views. Differently from volumetric methods which use both 3D surface points and surface normals, the approach does not use the surface normals because they are often unreliable when estimated from image data. The method is based on a hierarchical partitioning of the volume data set. The working volume is split and classified at different scales of spatial resolution into surface, internal and external voxels and this hierarchy is described by an octree structure in a multiscale framework. The octree structure is used to build a multiresolution description of the surface by means of compact support radial basis functions (RBF). A hierarchy of surface approximations at different levels of details is built by representing the voxels at the same octree level as RBF of similar spatial support. At each scale, information related to the reconstruction error drives the reconstruction process at the following finer scale. Preliminary results on synthetic data and future perspectives are presented.\",\"PeriodicalId\":191172,\"journal\":{\"name\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDPVT.2004.1335290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDPVT.2004.1335290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于隐式曲面的体积方法通常用于均匀分布的稀疏三维数据的表面重建。由于非均匀分布数据在实践中经常发生,因此近年来受到越来越多的关注。这项工作描述了从非均匀数据中重建表面的体积方法,该方法适用于从图像中重建表面,特别是从多个视图中重建表面。与同时使用三维表面点和表面法线的体积方法不同,该方法不使用表面法线,因为从图像数据估计表面法线通常不可靠。该方法基于卷数据集的分层分区。在不同的空间分辨率尺度下,将工作体划分为表面体素、内部体素和外部体素,并用多尺度框架中的八叉树结构来描述这种层次结构。利用八叉树结构,利用紧支撑径向基函数(RBF)建立了曲面的多分辨率描述。通过将相同八叉树级别的体素表示为具有相似空间支持的RBF,构建了不同细节级别的表面近似层次。在每个尺度上,与重建误差相关的信息驱动下一个更细尺度上的重建过程。提出了综合数据的初步结果和未来的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical 3D surface reconstruction based on radial basis functions
Volumetric methods based on implicit surfaces are commonly used in surface reconstruction from uniformly distributed sparse 3D data. The case of nonuniform distributed data has recently deserved more attention, because it occurs frequently in practice. This work describes a volumetric approach to surface reconstruction from nonuniform data which is suitable for the reconstruction of surfaces from images, in particular from multiple views. Differently from volumetric methods which use both 3D surface points and surface normals, the approach does not use the surface normals because they are often unreliable when estimated from image data. The method is based on a hierarchical partitioning of the volume data set. The working volume is split and classified at different scales of spatial resolution into surface, internal and external voxels and this hierarchy is described by an octree structure in a multiscale framework. The octree structure is used to build a multiresolution description of the surface by means of compact support radial basis functions (RBF). A hierarchy of surface approximations at different levels of details is built by representing the voxels at the same octree level as RBF of similar spatial support. At each scale, information related to the reconstruction error drives the reconstruction process at the following finer scale. Preliminary results on synthetic data and future perspectives are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信