无限循环自动静态检测的不动点算法

A. Ibing, Alexandra Mai
{"title":"无限循环自动静态检测的不动点算法","authors":"A. Ibing, Alexandra Mai","doi":"10.1109/HASE.2015.16","DOIUrl":null,"url":null,"abstract":"We present an algorithm for automated detection of infinite loop bugs in programs. It relies on a Satisfiability Modulo Theories (SMT) solver backend and can be run conveniently with SMT-constrained symbolic execution. The algorithm detects infinite loop bugs for single-path, multi-path and nested loops. We prove soundness of the algorithm, i.e. There are no false positive detections of infinite loops. Part of the algorithm is a fixed-point based termination check for 'simple' loops, whose soundness is a consequence of Brouwer's fixed-point theorem. The algorithm further yields no false negative detections for context-sensitive detection of periodic loop orbits with sum of prefix iterations and periodicity of up to the analysis loop unroll depth (bounded completeness), if the SMT solver answers the fixed-point satisfiability query in time. We describe an example implementation as plug-in extension of Eclipse CDT. The implementation is validated with the infinite loop test cases from the Juliet test suite and benchmarks are provided.","PeriodicalId":248645,"journal":{"name":"2015 IEEE 16th International Symposium on High Assurance Systems Engineering","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Fixed-Point Algorithm for Automated Static Detection of Infinite Loops\",\"authors\":\"A. Ibing, Alexandra Mai\",\"doi\":\"10.1109/HASE.2015.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for automated detection of infinite loop bugs in programs. It relies on a Satisfiability Modulo Theories (SMT) solver backend and can be run conveniently with SMT-constrained symbolic execution. The algorithm detects infinite loop bugs for single-path, multi-path and nested loops. We prove soundness of the algorithm, i.e. There are no false positive detections of infinite loops. Part of the algorithm is a fixed-point based termination check for 'simple' loops, whose soundness is a consequence of Brouwer's fixed-point theorem. The algorithm further yields no false negative detections for context-sensitive detection of periodic loop orbits with sum of prefix iterations and periodicity of up to the analysis loop unroll depth (bounded completeness), if the SMT solver answers the fixed-point satisfiability query in time. We describe an example implementation as plug-in extension of Eclipse CDT. The implementation is validated with the infinite loop test cases from the Juliet test suite and benchmarks are provided.\",\"PeriodicalId\":248645,\"journal\":{\"name\":\"2015 IEEE 16th International Symposium on High Assurance Systems Engineering\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 16th International Symposium on High Assurance Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HASE.2015.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Symposium on High Assurance Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HASE.2015.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种自动检测程序中无限循环错误的算法。它依赖于可满足模理论(Satisfiability Modulo Theories, SMT)解算器后端,可以在SMT约束的符号执行下方便地运行。该算法检测单路径、多路径和嵌套循环的无限循环错误。证明了该算法的合理性,即不存在无限循环的假阳性检测。该算法的一部分是基于不动点的“简单”循环的终止检查,其正确性是browwer不动点定理的结果。如果SMT求解器及时回答不动点可满足性查询,则该算法对于前缀迭代和周期的和直至分析循环展开深度(有界完备性)的周期循环轨道的上下文敏感检测不会产生假阴性检测。我们将一个示例实现描述为Eclipse CDT的插件扩展。该实现使用来自Juliet测试套件的无限循环测试用例进行验证,并提供了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fixed-Point Algorithm for Automated Static Detection of Infinite Loops
We present an algorithm for automated detection of infinite loop bugs in programs. It relies on a Satisfiability Modulo Theories (SMT) solver backend and can be run conveniently with SMT-constrained symbolic execution. The algorithm detects infinite loop bugs for single-path, multi-path and nested loops. We prove soundness of the algorithm, i.e. There are no false positive detections of infinite loops. Part of the algorithm is a fixed-point based termination check for 'simple' loops, whose soundness is a consequence of Brouwer's fixed-point theorem. The algorithm further yields no false negative detections for context-sensitive detection of periodic loop orbits with sum of prefix iterations and periodicity of up to the analysis loop unroll depth (bounded completeness), if the SMT solver answers the fixed-point satisfiability query in time. We describe an example implementation as plug-in extension of Eclipse CDT. The implementation is validated with the infinite loop test cases from the Juliet test suite and benchmarks are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信