改进的贝叶斯鲁棒语音分割方法

Z. Wenjun, Xie Jianying
{"title":"改进的贝叶斯鲁棒语音分割方法","authors":"Z. Wenjun, Xie Jianying","doi":"10.1109/ICNNSP.2003.1280740","DOIUrl":null,"url":null,"abstract":"To enhance the robustness of speech segmentation, this paper presents the improved segmentation model based on Bayesian method which combined with a prior probability which is independent to noise feature as the compensation for the mismatch of acoustic model. We evaluated and compared the performance of different methods in speech segmentation experiment.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Bayesian approach to robust speech segmentation\",\"authors\":\"Z. Wenjun, Xie Jianying\",\"doi\":\"10.1109/ICNNSP.2003.1280740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the robustness of speech segmentation, this paper presents the improved segmentation model based on Bayesian method which combined with a prior probability which is independent to noise feature as the compensation for the mismatch of acoustic model. We evaluated and compared the performance of different methods in speech segmentation experiment.\",\"PeriodicalId\":336216,\"journal\":{\"name\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2003.1280740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1280740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高语音分割的鲁棒性,本文提出了一种基于贝叶斯方法的改进语音分割模型,该模型结合了独立于噪声特征的先验概率作为声学模型失配的补偿。在语音分割实验中,我们对不同方法的性能进行了评价和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Bayesian approach to robust speech segmentation
To enhance the robustness of speech segmentation, this paper presents the improved segmentation model based on Bayesian method which combined with a prior probability which is independent to noise feature as the compensation for the mismatch of acoustic model. We evaluated and compared the performance of different methods in speech segmentation experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信