金属壳容错无线充电电容耦合谐振器

Fabiano Cezar Domingos, Susanna Vital de Campos de Freitas, R. Mirzavand, P. Mousavi
{"title":"金属壳容错无线充电电容耦合谐振器","authors":"Fabiano Cezar Domingos, Susanna Vital de Campos de Freitas, R. Mirzavand, P. Mousavi","doi":"10.1109/WPTC45513.2019.9055695","DOIUrl":null,"url":null,"abstract":"This work proposes a novel wireless power transfer (WPT) system in the near-field region using open-ended helical resonators (OEHRs), taking advantage of their high quality factor characteristics. Instead of using the conventional approach of magnetic coupling between resonators, capacitive coupling is introduced between transmitter and receiver devices. This new configuration is designed to operate at the frequency of 6.78 MHz and is evaluated by measurement, simulation and equivalent circuit analysis. Furthermore, the proposed technology allows significant misalignment between transmitter and receiver structures, as well as enabling WPT to devices with a metallic case, which is not practical in conventional charging topologies.","PeriodicalId":148719,"journal":{"name":"2019 IEEE Wireless Power Transfer Conference (WPTC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Capacitively Coupled Resonators for Misalignment-Tolerant Wireless Charging through Metallic Cases\",\"authors\":\"Fabiano Cezar Domingos, Susanna Vital de Campos de Freitas, R. Mirzavand, P. Mousavi\",\"doi\":\"10.1109/WPTC45513.2019.9055695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a novel wireless power transfer (WPT) system in the near-field region using open-ended helical resonators (OEHRs), taking advantage of their high quality factor characteristics. Instead of using the conventional approach of magnetic coupling between resonators, capacitive coupling is introduced between transmitter and receiver devices. This new configuration is designed to operate at the frequency of 6.78 MHz and is evaluated by measurement, simulation and equivalent circuit analysis. Furthermore, the proposed technology allows significant misalignment between transmitter and receiver structures, as well as enabling WPT to devices with a metallic case, which is not practical in conventional charging topologies.\",\"PeriodicalId\":148719,\"journal\":{\"name\":\"2019 IEEE Wireless Power Transfer Conference (WPTC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Power Transfer Conference (WPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPTC45513.2019.9055695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPTC45513.2019.9055695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作提出了一种新的无线电力传输(WPT)系统在近场区域使用开放式螺旋谐振器(OEHRs),利用其高品质因数的特点。在发射端和接收端之间引入电容耦合,而不是传统的谐振器之间的磁耦合。这种新配置的工作频率为6.78 MHz,并通过测量、仿真和等效电路分析进行了评估。此外,所提出的技术允许发射器和接收器结构之间存在明显的不对准,并且使WPT能够用于具有金属外壳的设备,这在传统的充电拓扑结构中是不实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacitively Coupled Resonators for Misalignment-Tolerant Wireless Charging through Metallic Cases
This work proposes a novel wireless power transfer (WPT) system in the near-field region using open-ended helical resonators (OEHRs), taking advantage of their high quality factor characteristics. Instead of using the conventional approach of magnetic coupling between resonators, capacitive coupling is introduced between transmitter and receiver devices. This new configuration is designed to operate at the frequency of 6.78 MHz and is evaluated by measurement, simulation and equivalent circuit analysis. Furthermore, the proposed technology allows significant misalignment between transmitter and receiver structures, as well as enabling WPT to devices with a metallic case, which is not practical in conventional charging topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信