{"title":"基于cu -绝缘体- si混合等离子体环形谐振腔的超紧凑硅电光调制器分析","authors":"Shiyang Zhu, G. Lo, D. Kwong","doi":"10.1109/PGC.2012.6457952","DOIUrl":null,"url":null,"abstract":"We design and analyze an ultracompact silicon electro-optic modulator operating at the 1550-nm wavelengths. The modulator consists of a Cu-insulator-Si hybrid plasmonic donut resonator coupled with a conventional Si channel waveguide. A voltage is applied between the ring-shaped Cu cap and the cylinder Cu contact located at the center-donut to modify the condition of the Cu-insulator-Si capacitor between depletion and accumulation, thus leading to a resonant wavelength shift of the resonator. In a modulator with 1-μm radius and 5-nm HfO2 gate oxide, numerical simulation predicts an intensity extinction ratio of >;6 dB for a voltage swing of ~3 V, a switching energy of ~50 fJ/bit, and a speed-of-response of >;50 GHz.","PeriodicalId":158783,"journal":{"name":"2012 Photonics Global Conference (PGC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of ultracompact silicon electro-optic modulator based on Cu-insulator-Si hybrid plasmonic donut resonator\",\"authors\":\"Shiyang Zhu, G. Lo, D. Kwong\",\"doi\":\"10.1109/PGC.2012.6457952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design and analyze an ultracompact silicon electro-optic modulator operating at the 1550-nm wavelengths. The modulator consists of a Cu-insulator-Si hybrid plasmonic donut resonator coupled with a conventional Si channel waveguide. A voltage is applied between the ring-shaped Cu cap and the cylinder Cu contact located at the center-donut to modify the condition of the Cu-insulator-Si capacitor between depletion and accumulation, thus leading to a resonant wavelength shift of the resonator. In a modulator with 1-μm radius and 5-nm HfO2 gate oxide, numerical simulation predicts an intensity extinction ratio of >;6 dB for a voltage swing of ~3 V, a switching energy of ~50 fJ/bit, and a speed-of-response of >;50 GHz.\",\"PeriodicalId\":158783,\"journal\":{\"name\":\"2012 Photonics Global Conference (PGC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Photonics Global Conference (PGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PGC.2012.6457952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Photonics Global Conference (PGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PGC.2012.6457952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of ultracompact silicon electro-optic modulator based on Cu-insulator-Si hybrid plasmonic donut resonator
We design and analyze an ultracompact silicon electro-optic modulator operating at the 1550-nm wavelengths. The modulator consists of a Cu-insulator-Si hybrid plasmonic donut resonator coupled with a conventional Si channel waveguide. A voltage is applied between the ring-shaped Cu cap and the cylinder Cu contact located at the center-donut to modify the condition of the Cu-insulator-Si capacitor between depletion and accumulation, thus leading to a resonant wavelength shift of the resonator. In a modulator with 1-μm radius and 5-nm HfO2 gate oxide, numerical simulation predicts an intensity extinction ratio of >;6 dB for a voltage swing of ~3 V, a switching energy of ~50 fJ/bit, and a speed-of-response of >;50 GHz.