网络安全数据中的周期性子序列检测

Matthew Price-Williams, N. Heard, Melissa J. M. Turcotte
{"title":"网络安全数据中的周期性子序列检测","authors":"Matthew Price-Williams, N. Heard, Melissa J. M. Turcotte","doi":"10.1109/EISIC.2017.40","DOIUrl":null,"url":null,"abstract":"Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory’senterprise computer network","PeriodicalId":436947,"journal":{"name":"2017 European Intelligence and Security Informatics Conference (EISIC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Detecting Periodic Subsequences in Cyber Security Data\",\"authors\":\"Matthew Price-Williams, N. Heard, Melissa J. M. Turcotte\",\"doi\":\"10.1109/EISIC.2017.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory’senterprise computer network\",\"PeriodicalId\":436947,\"journal\":{\"name\":\"2017 European Intelligence and Security Informatics Conference (EISIC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Intelligence and Security Informatics Conference (EISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EISIC.2017.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC.2017.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

近年来,网络安全防御中的异常检测为传统的基于签名的检测系统提供了一种正交方法,引起了人们的广泛关注。异常检测依赖于建立正常计算机网络行为的概率模型并检测与模型的偏差。大多数用于网络安全的数据集混合了用户驱动的事件和自动网络事件,这些事件通常表现为轮询行为。将这些自动事件与人类活动引起的事件分离开来,对于建立用于异常检测的良好统计模型至关重要。本文提出了一个变更点检测框架,用于识别作为事件时间的周期性子序列出现的自动网络事件。每个子序列的开始事件被解释为一个人类行为,然后产生一个自动的周期性过程。解决了由于存在重复和缺失数据而产生的困难。该方法使用来自洛斯阿拉莫斯国家实验室企业计算机网络的认证数据进行了演示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Periodic Subsequences in Cyber Security Data
Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory’senterprise computer network
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信