关联实时监控数据,实现移动网络管理

N. Jiang, Guofei Jiang, Haifeng Chen, K. Yoshihira
{"title":"关联实时监控数据,实现移动网络管理","authors":"N. Jiang, Guofei Jiang, Haifeng Chen, K. Yoshihira","doi":"10.1109/WOWMOM.2008.4594861","DOIUrl":null,"url":null,"abstract":"With a proliferation of new mobile data services, the complexity of wireless mobile networks is rapidly growing. While large amount of operational monitoring data such as performance measurement statistics is available, it is a great challenge to correlate such data effectively for real time performance analysis. Meantime, the dynamics of mobile applications and environments introduce another dimension of complexity for us to track the evolving system status. In this paper, we analyze the spatial and temporal correlations of Key Performance Indicators (KPIs) to track and interpret the operational status of wide-area cellular systems. We first correlate large number of raw measurements into limited number of KPIs. Further we exploit spatial and temporal correlations of these KPIs for cellular network management. We use large volume of field data collected from real cellular systems in our analysis. Experimental results demonstrate that it is promising to build a real-time data management and support system by effectively correlating KPIs.","PeriodicalId":346269,"journal":{"name":"2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Correlating real-time monitoring data for mobile network management\",\"authors\":\"N. Jiang, Guofei Jiang, Haifeng Chen, K. Yoshihira\",\"doi\":\"10.1109/WOWMOM.2008.4594861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a proliferation of new mobile data services, the complexity of wireless mobile networks is rapidly growing. While large amount of operational monitoring data such as performance measurement statistics is available, it is a great challenge to correlate such data effectively for real time performance analysis. Meantime, the dynamics of mobile applications and environments introduce another dimension of complexity for us to track the evolving system status. In this paper, we analyze the spatial and temporal correlations of Key Performance Indicators (KPIs) to track and interpret the operational status of wide-area cellular systems. We first correlate large number of raw measurements into limited number of KPIs. Further we exploit spatial and temporal correlations of these KPIs for cellular network management. We use large volume of field data collected from real cellular systems in our analysis. Experimental results demonstrate that it is promising to build a real-time data management and support system by effectively correlating KPIs.\",\"PeriodicalId\":346269,\"journal\":{\"name\":\"2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOWMOM.2008.4594861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOWMOM.2008.4594861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着新的移动数据业务的激增,无线移动网络的复杂性正在迅速增长。虽然有大量的运行监控数据(如性能测量统计数据)可用,但如何有效地将这些数据关联起来进行实时性能分析是一个巨大的挑战。同时,移动应用程序和环境的动态为我们跟踪不断变化的系统状态引入了另一个复杂性维度。在本文中,我们分析了关键绩效指标(kpi)的时空相关性,以跟踪和解释广域蜂窝系统的运行状态。我们首先将大量原始测量结果与有限数量的kpi关联起来。此外,我们利用这些关键绩效指标的空间和时间相关性进行蜂窝网络管理。在我们的分析中,我们使用了从实际蜂窝系统收集的大量现场数据。实验结果表明,通过有效关联kpi,构建实时数据管理和支持系统是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlating real-time monitoring data for mobile network management
With a proliferation of new mobile data services, the complexity of wireless mobile networks is rapidly growing. While large amount of operational monitoring data such as performance measurement statistics is available, it is a great challenge to correlate such data effectively for real time performance analysis. Meantime, the dynamics of mobile applications and environments introduce another dimension of complexity for us to track the evolving system status. In this paper, we analyze the spatial and temporal correlations of Key Performance Indicators (KPIs) to track and interpret the operational status of wide-area cellular systems. We first correlate large number of raw measurements into limited number of KPIs. Further we exploit spatial and temporal correlations of these KPIs for cellular network management. We use large volume of field data collected from real cellular systems in our analysis. Experimental results demonstrate that it is promising to build a real-time data management and support system by effectively correlating KPIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信