样品特异性晚期融合显著性检测

Jie Sun, Congyan Lang, Songhe Feng
{"title":"样品特异性晚期融合显著性检测","authors":"Jie Sun, Congyan Lang, Songhe Feng","doi":"10.1109/WIAMIS.2013.6616133","DOIUrl":null,"url":null,"abstract":"Typically, the saliency map of an image is usually inferred by only using the information within this image. While efficient, such single-image-based methods may fail to obtain reliable results, because the information within a single image may be insufficient for defining saliency. In this paper, we propose a novel idea of learning with labeled images and adopt a new paradigm called sample specific late fusion (SSLF). To effectively explore the visual neighborhood information, we propose a semi-supervised learning technique for learning robust sample specific fusion parameters for multiply response maps of generic bottom-up saliency detectors. Different from previous methods, the proposed SSLF method integrates both middle-level image representation and unlabeled data information through an effective graph regularization framework. Extensive experiments have clearly validated its superiority over other state-of-the-art methods.","PeriodicalId":408077,"journal":{"name":"2013 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample specific late fusion for saliency detection\",\"authors\":\"Jie Sun, Congyan Lang, Songhe Feng\",\"doi\":\"10.1109/WIAMIS.2013.6616133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typically, the saliency map of an image is usually inferred by only using the information within this image. While efficient, such single-image-based methods may fail to obtain reliable results, because the information within a single image may be insufficient for defining saliency. In this paper, we propose a novel idea of learning with labeled images and adopt a new paradigm called sample specific late fusion (SSLF). To effectively explore the visual neighborhood information, we propose a semi-supervised learning technique for learning robust sample specific fusion parameters for multiply response maps of generic bottom-up saliency detectors. Different from previous methods, the proposed SSLF method integrates both middle-level image representation and unlabeled data information through an effective graph regularization framework. Extensive experiments have clearly validated its superiority over other state-of-the-art methods.\",\"PeriodicalId\":408077,\"journal\":{\"name\":\"2013 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2013.6616133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2013.6616133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通常,图像的显著性映射通常仅通过使用该图像中的信息来推断。虽然效率很高,但这种基于单幅图像的方法可能无法获得可靠的结果,因为单幅图像中的信息可能不足以定义显著性。在本文中,我们提出了一种新的基于标记图像的学习思路,并采用了一种称为样本特异性晚期融合(SSLF)的新范式。为了有效地探索视觉邻域信息,我们提出了一种半监督学习技术,用于学习通用自底向上显著性检测器的多响应映射的鲁棒样本特定融合参数。与以往的方法不同,本文提出的SSLF方法通过有效的图正则化框架将图像的中层表示和未标记的数据信息集成在一起。大量的实验清楚地证明了它比其他最先进的方法优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sample specific late fusion for saliency detection
Typically, the saliency map of an image is usually inferred by only using the information within this image. While efficient, such single-image-based methods may fail to obtain reliable results, because the information within a single image may be insufficient for defining saliency. In this paper, we propose a novel idea of learning with labeled images and adopt a new paradigm called sample specific late fusion (SSLF). To effectively explore the visual neighborhood information, we propose a semi-supervised learning technique for learning robust sample specific fusion parameters for multiply response maps of generic bottom-up saliency detectors. Different from previous methods, the proposed SSLF method integrates both middle-level image representation and unlabeled data information through an effective graph regularization framework. Extensive experiments have clearly validated its superiority over other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信