分析CLPsych 2019共享任务中现有系统的使用情况

A. Hevia, R. Menéndez, Daniel Gayo-Avello
{"title":"分析CLPsych 2019共享任务中现有系统的使用情况","authors":"A. Hevia, R. Menéndez, Daniel Gayo-Avello","doi":"10.18653/v1/W19-3017","DOIUrl":null,"url":null,"abstract":"In this paper we describe the UniOvi-WESO classification systems proposed for the 2019 Computational Linguistics and Clinical Psychology (CLPsych) Shared Task. We explore the use of two systems trained with ReachOut data from the 2016 CLPsych task, and compare them to a baseline system trained with the data provided for this task. All the classifiers were trained with features extracted just from the text of each post, without using any other metadata. We found out that the baseline system performs slightly better than the pretrained systems, mainly due to the differences in labeling between the two tasks. However, they still work reasonably well and can detect if a user is at risk of suicide or not.","PeriodicalId":201097,"journal":{"name":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analyzing the use of existing systems for the CLPsych 2019 Shared Task\",\"authors\":\"A. Hevia, R. Menéndez, Daniel Gayo-Avello\",\"doi\":\"10.18653/v1/W19-3017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe the UniOvi-WESO classification systems proposed for the 2019 Computational Linguistics and Clinical Psychology (CLPsych) Shared Task. We explore the use of two systems trained with ReachOut data from the 2016 CLPsych task, and compare them to a baseline system trained with the data provided for this task. All the classifiers were trained with features extracted just from the text of each post, without using any other metadata. We found out that the baseline system performs slightly better than the pretrained systems, mainly due to the differences in labeling between the two tasks. However, they still work reasonably well and can detect if a user is at risk of suicide or not.\",\"PeriodicalId\":201097,\"journal\":{\"name\":\"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们描述了为2019计算语言学和临床心理学(CLPsych)共享任务提出的UniOvi-WESO分类系统。我们探索了使用来自2016 CLPsych任务的ReachOut数据训练的两个系统的使用,并将它们与使用该任务提供的数据训练的基线系统进行比较。所有分类器都使用从每篇文章的文本中提取的特征进行训练,而不使用任何其他元数据。我们发现基线系统的表现略好于预训练系统,主要是由于两个任务之间标记的差异。然而,他们仍然工作得相当好,可以检测用户是否有自杀的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the use of existing systems for the CLPsych 2019 Shared Task
In this paper we describe the UniOvi-WESO classification systems proposed for the 2019 Computational Linguistics and Clinical Psychology (CLPsych) Shared Task. We explore the use of two systems trained with ReachOut data from the 2016 CLPsych task, and compare them to a baseline system trained with the data provided for this task. All the classifiers were trained with features extracted just from the text of each post, without using any other metadata. We found out that the baseline system performs slightly better than the pretrained systems, mainly due to the differences in labeling between the two tasks. However, they still work reasonably well and can detect if a user is at risk of suicide or not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信