轮式移动机器人自适应轨迹跟踪控制器的比较

Ehab I. Al Khatib, Wasim M. F. Al-Masri, S. Mukhopadhyay, M. Jaradat, M. Abdel-Hafez
{"title":"轮式移动机器人自适应轨迹跟踪控制器的比较","authors":"Ehab I. Al Khatib, Wasim M. F. Al-Masri, S. Mukhopadhyay, M. Jaradat, M. Abdel-Hafez","doi":"10.1109/ISMA.2015.7373485","DOIUrl":null,"url":null,"abstract":"Two adaptive trajectory tracking controllers for wheeled mobile robots are tested in this work. Adaptively tuned proportional control is one approach, where as the other controller uses a Universal Adaptive Stabilization (UAS) based technique. Using simulations, the robustness of the above controllers is quantified in the presence of measurement noise. The robustness is measured in terms of the Integral of absolute magnitude of the error (IAE), the Integral of square of the error (ISE), and the Integral of time multiplied by the absolute value of the error (ITAE) criteria. It is observed that the UAS based technique shows fast convergence in the absence of noise. To combat the effect of noise, the authors reset the adaptation gains after the adaptation gains reach a preset bound. With this technique it is found that the UAS based technique converges to the trajectory being tracked faster than the adaptively tuned proportional controller, and also faster than a traditional inputoutput state feedback linearization based controller.","PeriodicalId":222454,"journal":{"name":"2015 10th International Symposium on Mechatronics and its Applications (ISMA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A comparison of adaptive trajectory tracking controllers for wheeled mobile robots\",\"authors\":\"Ehab I. Al Khatib, Wasim M. F. Al-Masri, S. Mukhopadhyay, M. Jaradat, M. Abdel-Hafez\",\"doi\":\"10.1109/ISMA.2015.7373485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two adaptive trajectory tracking controllers for wheeled mobile robots are tested in this work. Adaptively tuned proportional control is one approach, where as the other controller uses a Universal Adaptive Stabilization (UAS) based technique. Using simulations, the robustness of the above controllers is quantified in the presence of measurement noise. The robustness is measured in terms of the Integral of absolute magnitude of the error (IAE), the Integral of square of the error (ISE), and the Integral of time multiplied by the absolute value of the error (ITAE) criteria. It is observed that the UAS based technique shows fast convergence in the absence of noise. To combat the effect of noise, the authors reset the adaptation gains after the adaptation gains reach a preset bound. With this technique it is found that the UAS based technique converges to the trajectory being tracked faster than the adaptively tuned proportional controller, and also faster than a traditional inputoutput state feedback linearization based controller.\",\"PeriodicalId\":222454,\"journal\":{\"name\":\"2015 10th International Symposium on Mechatronics and its Applications (ISMA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Symposium on Mechatronics and its Applications (ISMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMA.2015.7373485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Symposium on Mechatronics and its Applications (ISMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMA.2015.7373485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文对两种轮式移动机器人自适应轨迹跟踪控制器进行了测试。自适应调谐比例控制是一种方法,而另一种控制器使用基于通用自适应稳定(UAS)的技术。通过仿真,量化了上述控制器在测量噪声存在下的鲁棒性。鲁棒性是根据误差绝对值的积分(IAE)、误差平方的积分(ISE)和时间乘以误差绝对值的积分(ITAE)标准来衡量的。结果表明,该方法在无噪声条件下具有较快的收敛速度。为了对抗噪声的影响,作者在自适应增益达到预设范围后重新设置自适应增益。结果表明,该方法比自适应调谐比例控制器收敛到被跟踪轨迹的速度更快,也比传统的基于输入输出状态反馈线性化的控制器收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of adaptive trajectory tracking controllers for wheeled mobile robots
Two adaptive trajectory tracking controllers for wheeled mobile robots are tested in this work. Adaptively tuned proportional control is one approach, where as the other controller uses a Universal Adaptive Stabilization (UAS) based technique. Using simulations, the robustness of the above controllers is quantified in the presence of measurement noise. The robustness is measured in terms of the Integral of absolute magnitude of the error (IAE), the Integral of square of the error (ISE), and the Integral of time multiplied by the absolute value of the error (ITAE) criteria. It is observed that the UAS based technique shows fast convergence in the absence of noise. To combat the effect of noise, the authors reset the adaptation gains after the adaptation gains reach a preset bound. With this technique it is found that the UAS based technique converges to the trajectory being tracked faster than the adaptively tuned proportional controller, and also faster than a traditional inputoutput state feedback linearization based controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信