一种基于HNM模型的混合基音周期估计方法

M. Nagy, G. Rozinaj, A. Palenik
{"title":"一种基于HNM模型的混合基音周期估计方法","authors":"M. Nagy, G. Rozinaj, A. Palenik","doi":"10.1109/ELMAR.2007.4418825","DOIUrl":null,"url":null,"abstract":"Pitch period estimation (also called fundamental frequency estimation) is widely needed in speech processing for many purposes. In our system for prosodic modification of speech, the pitch period estimation is used as a basis for frame length detection. The pitch period estimation method used in the system is a hybrid method that is based on YIN fundamental frequency estimation algorithm and a method for fundamental frequency detection on magnitude of the speech signal. The experiments show, that the method is useful in sinusoidal modeling domain, as in other domains, too.","PeriodicalId":170000,"journal":{"name":"ELMAR 2007","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A hybrid pitch period estimation method based on HNM model\",\"authors\":\"M. Nagy, G. Rozinaj, A. Palenik\",\"doi\":\"10.1109/ELMAR.2007.4418825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pitch period estimation (also called fundamental frequency estimation) is widely needed in speech processing for many purposes. In our system for prosodic modification of speech, the pitch period estimation is used as a basis for frame length detection. The pitch period estimation method used in the system is a hybrid method that is based on YIN fundamental frequency estimation algorithm and a method for fundamental frequency detection on magnitude of the speech signal. The experiments show, that the method is useful in sinusoidal modeling domain, as in other domains, too.\",\"PeriodicalId\":170000,\"journal\":{\"name\":\"ELMAR 2007\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELMAR 2007\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELMAR.2007.4418825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELMAR 2007","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2007.4418825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基音周期估计(又称基频估计)在语音处理中有着广泛的应用。在我们的语音韵律修改系统中,基音周期估计被用作帧长度检测的基础。系统中使用的基音周期估计方法是一种基于YIN基频估计算法和基于语音信号幅值的基频检测方法的混合方法。实验表明,该方法不仅适用于正弦建模领域,也适用于其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid pitch period estimation method based on HNM model
Pitch period estimation (also called fundamental frequency estimation) is widely needed in speech processing for many purposes. In our system for prosodic modification of speech, the pitch period estimation is used as a basis for frame length detection. The pitch period estimation method used in the system is a hybrid method that is based on YIN fundamental frequency estimation algorithm and a method for fundamental frequency detection on magnitude of the speech signal. The experiments show, that the method is useful in sinusoidal modeling domain, as in other domains, too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信