用时间序列估计Hurst指数的广义方法

Lyudmyla Kirichenko, T. Radivilova, V. Bulakh
{"title":"用时间序列估计Hurst指数的广义方法","authors":"Lyudmyla Kirichenko, T. Radivilova, V. Bulakh","doi":"10.5604/01.3001.0010.8639","DOIUrl":null,"url":null,"abstract":". This paper presents a generalized approach to the fractal analysis of self-similar random processes by short time series. Several stages of the fractal analysis are proposed. Preliminary time series analysis includes the removal of short-term dependence, the identification of true long-term dependence and hypothesis test on the existence of a self-similarity property. Methods of unbiased interval estimation of the Hurst exponent in cases of stationary and non-stationary time series are discussed. Methods of estimate refinement are proposed. This approach is applicable to the study of self-similar time series of different nature.","PeriodicalId":142227,"journal":{"name":"Informatics, Control, Measurement in Economy and Environment Protection","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generalized approach to Hurst exponent estimating by time series\",\"authors\":\"Lyudmyla Kirichenko, T. Radivilova, V. Bulakh\",\"doi\":\"10.5604/01.3001.0010.8639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper presents a generalized approach to the fractal analysis of self-similar random processes by short time series. Several stages of the fractal analysis are proposed. Preliminary time series analysis includes the removal of short-term dependence, the identification of true long-term dependence and hypothesis test on the existence of a self-similarity property. Methods of unbiased interval estimation of the Hurst exponent in cases of stationary and non-stationary time series are discussed. Methods of estimate refinement are proposed. This approach is applicable to the study of self-similar time series of different nature.\",\"PeriodicalId\":142227,\"journal\":{\"name\":\"Informatics, Control, Measurement in Economy and Environment Protection\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics, Control, Measurement in Economy and Environment Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0010.8639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics, Control, Measurement in Economy and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0010.8639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

. 本文提出了一种广义的短时间序列自相似随机过程分形分析方法。提出了分形分析的几个阶段。初步的时间序列分析包括去除短期依赖性、确定真正的长期依赖性和对自相似性存在的假设检验。讨论了平稳和非平稳时间序列中Hurst指数的无偏区间估计方法。提出了改进估计的方法。该方法适用于研究不同性质的自相似时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized approach to Hurst exponent estimating by time series
. This paper presents a generalized approach to the fractal analysis of self-similar random processes by short time series. Several stages of the fractal analysis are proposed. Preliminary time series analysis includes the removal of short-term dependence, the identification of true long-term dependence and hypothesis test on the existence of a self-similarity property. Methods of unbiased interval estimation of the Hurst exponent in cases of stationary and non-stationary time series are discussed. Methods of estimate refinement are proposed. This approach is applicable to the study of self-similar time series of different nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信