{"title":"与德布鲁因序列类似的任意长度序列","authors":"Abhinav Nellore, Rachel A. Ward","doi":"10.4230/LIPIcs.CPM.2022.9","DOIUrl":null,"url":null,"abstract":"Let $\\widetilde{\\alpha}$ be a length-$L$ cyclic sequence of characters from a size-$K$ alphabet $\\mathcal{A}$ such that the number of occurrences of any length-$m$ string on $\\mathcal{A}$ as a substring of $\\widetilde{\\alpha}$ is $\\lfloor L / K^m \\rfloor$ or $\\lceil L / K^m \\rceil$. When $L = K^N$ for any positive integer $N$, $\\widetilde{\\alpha}$ is a de Bruijn sequence of order $N$, and when $L \\neq K^N$, $\\widetilde{\\alpha}$ shares many properties with de Bruijn sequences. We describe an algorithm that outputs some $\\widetilde{\\alpha}$ for any combination of $K \\geq 2$ and $L \\geq 1$ in $O(L)$ time using $O(L \\log K)$ space. This algorithm extends Lempel's recursive construction of a binary de Bruijn sequence. An implementation written in Python is available at https://github.com/nelloreward/pkl.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arbitrary-length analogs to de Bruijn sequences\",\"authors\":\"Abhinav Nellore, Rachel A. Ward\",\"doi\":\"10.4230/LIPIcs.CPM.2022.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\widetilde{\\\\alpha}$ be a length-$L$ cyclic sequence of characters from a size-$K$ alphabet $\\\\mathcal{A}$ such that the number of occurrences of any length-$m$ string on $\\\\mathcal{A}$ as a substring of $\\\\widetilde{\\\\alpha}$ is $\\\\lfloor L / K^m \\\\rfloor$ or $\\\\lceil L / K^m \\\\rceil$. When $L = K^N$ for any positive integer $N$, $\\\\widetilde{\\\\alpha}$ is a de Bruijn sequence of order $N$, and when $L \\\\neq K^N$, $\\\\widetilde{\\\\alpha}$ shares many properties with de Bruijn sequences. We describe an algorithm that outputs some $\\\\widetilde{\\\\alpha}$ for any combination of $K \\\\geq 2$ and $L \\\\geq 1$ in $O(L)$ time using $O(L \\\\log K)$ space. This algorithm extends Lempel's recursive construction of a binary de Bruijn sequence. An implementation written in Python is available at https://github.com/nelloreward/pkl.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2022.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2022.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $\widetilde{\alpha}$ be a length-$L$ cyclic sequence of characters from a size-$K$ alphabet $\mathcal{A}$ such that the number of occurrences of any length-$m$ string on $\mathcal{A}$ as a substring of $\widetilde{\alpha}$ is $\lfloor L / K^m \rfloor$ or $\lceil L / K^m \rceil$. When $L = K^N$ for any positive integer $N$, $\widetilde{\alpha}$ is a de Bruijn sequence of order $N$, and when $L \neq K^N$, $\widetilde{\alpha}$ shares many properties with de Bruijn sequences. We describe an algorithm that outputs some $\widetilde{\alpha}$ for any combination of $K \geq 2$ and $L \geq 1$ in $O(L)$ time using $O(L \log K)$ space. This algorithm extends Lempel's recursive construction of a binary de Bruijn sequence. An implementation written in Python is available at https://github.com/nelloreward/pkl.