电子邮件社交网络局部拓扑结构演化模式研究

K. Juszczyszyn, Wojciech Frys
{"title":"电子邮件社交网络局部拓扑结构演化模式研究","authors":"K. Juszczyszyn, Wojciech Frys","doi":"10.1109/WI-IAT.2011.21","DOIUrl":null,"url":null,"abstract":"We present a new approach to the quantifying changes in an email social network illustrated by the data from the Enron dataset). The Triad Transition Matrix containing the probabilities of transitions between triads is defined, then we show how it can help to discover the dynamic patterns of network evolution. The compatibility of the TTM approach with the existing methods of characterizing the local topology (network motifs) is discussed as well.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discovering the Evolutionary Patterns in Local Topology of an E-Mail Social Network\",\"authors\":\"K. Juszczyszyn, Wojciech Frys\",\"doi\":\"10.1109/WI-IAT.2011.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new approach to the quantifying changes in an email social network illustrated by the data from the Enron dataset). The Triad Transition Matrix containing the probabilities of transitions between triads is defined, then we show how it can help to discover the dynamic patterns of network evolution. The compatibility of the TTM approach with the existing methods of characterizing the local topology (network motifs) is discussed as well.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种量化电子邮件社交网络变化的新方法(由安然数据集的数据说明)。定义了包含三元组之间转移概率的三元组转移矩阵,然后我们展示了它如何帮助发现网络演化的动态模式。讨论了TTM方法与现有的局部拓扑(网络基元)表征方法的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering the Evolutionary Patterns in Local Topology of an E-Mail Social Network
We present a new approach to the quantifying changes in an email social network illustrated by the data from the Enron dataset). The Triad Transition Matrix containing the probabilities of transitions between triads is defined, then we show how it can help to discover the dynamic patterns of network evolution. The compatibility of the TTM approach with the existing methods of characterizing the local topology (network motifs) is discussed as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信