一个用于STEM文档的公式标识符注释推荐系统

Philipp Scharpf, Ian Mackerracher, M. Schubotz, J. Beel, Corinna Breitinger, Bela Gipp
{"title":"一个用于STEM文档的公式标识符注释推荐系统","authors":"Philipp Scharpf, Ian Mackerracher, M. Schubotz, J. Beel, Corinna Breitinger, Bela Gipp","doi":"10.1145/3298689.3347042","DOIUrl":null,"url":null,"abstract":"Documents from science, technology, engineering and mathematics (STEM) often contain a large number of mathematical formulae alongside text. Semantic search, recommender, and question answering systems require the occurring formula constants and variables (identifiers) to be disambiguated. We present a first implementation of a recommender system that enables and accelerates formula annotation by displaying the most likely candidates for formula and identifier names from four different sources (arXiv, Wikipedia, Wikidata, or the surrounding text). A first evaluation shows that in total, 78% of the formula identifier name recommendations were accepted by the user as a suitable annotation. Furthermore, document-wide annotation saved the user the annotation of ten times more other identifier occurrences. Our long-term vision is to integrate the annotation recommender into the edit-view of Wikipedia and the online LaTeX editor Overleaf.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"40 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"AnnoMathTeX - a formula identifier annotation recommender system for STEM documents\",\"authors\":\"Philipp Scharpf, Ian Mackerracher, M. Schubotz, J. Beel, Corinna Breitinger, Bela Gipp\",\"doi\":\"10.1145/3298689.3347042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Documents from science, technology, engineering and mathematics (STEM) often contain a large number of mathematical formulae alongside text. Semantic search, recommender, and question answering systems require the occurring formula constants and variables (identifiers) to be disambiguated. We present a first implementation of a recommender system that enables and accelerates formula annotation by displaying the most likely candidates for formula and identifier names from four different sources (arXiv, Wikipedia, Wikidata, or the surrounding text). A first evaluation shows that in total, 78% of the formula identifier name recommendations were accepted by the user as a suitable annotation. Furthermore, document-wide annotation saved the user the annotation of ten times more other identifier occurrences. Our long-term vision is to integrate the annotation recommender into the edit-view of Wikipedia and the online LaTeX editor Overleaf.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"40 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3347042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

来自科学、技术、工程和数学(STEM)的文件通常在文本旁边包含大量的数学公式。语义搜索、推荐和问答系统需要消除出现的公式常量和变量(标识符)的歧义。我们提出了推荐系统的第一个实现,该系统通过显示来自四个不同来源(arXiv、Wikipedia、Wikidata或周围文本)的公式和标识符名称的最可能候选项来支持和加速公式注释。第一次评估表明,总的来说,78%的公式标识符名称推荐被用户接受为合适的注释。此外,文档范围的注释为用户节省了十倍于其他标识符出现次数的注释。我们的长期愿景是将注释推荐器集成到维基百科的编辑视图和在线LaTeX编辑器Overleaf中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AnnoMathTeX - a formula identifier annotation recommender system for STEM documents
Documents from science, technology, engineering and mathematics (STEM) often contain a large number of mathematical formulae alongside text. Semantic search, recommender, and question answering systems require the occurring formula constants and variables (identifiers) to be disambiguated. We present a first implementation of a recommender system that enables and accelerates formula annotation by displaying the most likely candidates for formula and identifier names from four different sources (arXiv, Wikipedia, Wikidata, or the surrounding text). A first evaluation shows that in total, 78% of the formula identifier name recommendations were accepted by the user as a suitable annotation. Furthermore, document-wide annotation saved the user the annotation of ten times more other identifier occurrences. Our long-term vision is to integrate the annotation recommender into the edit-view of Wikipedia and the online LaTeX editor Overleaf.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信